# $Id$
step-by-step:
- cd step-by-step ; $(MAKE)
+ cd chapter-2.step-by-step ; $(MAKE)
clean:
- cd step-by-step ; $(MAKE) clean
+ cd chapter-2.step-by-step ; $(MAKE) clean
.PHONY: step-by-step clean
gradient of the solution along the faces of each cell.
In theory this error estimator has quite a number of limitations. These
limitations as well as its implementation are described in
-<a href="http://hermes.iwr.uni-heidelberg.de/~deal/doc/auto/kdoc/numerics/KellyErrorEstimator.html">
+<a href="http://gaia.iwr.uni-heidelberg.de/~deal/doc/auto/kdoc/numerics/KellyErrorEstimator.html">
the documentation for the class <code>KellyErrorEstimator</code></a>.
In daily use, however, this error estimator has shown itself to behave
rather like Hamlet: It is laden with theoretical woes and sorrows,
<li>in case your problem includes spatially varying coefficients,
you may give that as well (but we will not discuss this here,
- refer to the <a href="http://hermes.iwr.uni-heidelberg.de/~deal/doc/auto/kdoc/numerics/KellyErrorEstimator.html">
+ refer to the <a href="http://gaia.iwr.uni-heidelberg.de/~deal/doc/auto/kdoc/numerics/KellyErrorEstimator.html">
<code>KellyErrorEstimator</code> class documentation</a>).
</li>
</ul>
<p>
The <acronym>deal.II</acronym> class
that has the ability to handle constraint matrices is called
-<a href="http://hermes.iwr.uni-heidelberg.de/~deal/doc/auto/kdoc/dof/ConstraintMatrix.html"><code>ConstraintMatrix</code></a>. It provides all functions
+<a href="http://gaia.iwr.uni-heidelberg.de/~deal/doc/auto/kdoc/dof/ConstraintMatrix.html"><code>ConstraintMatrix</code></a>. It provides all functions
necessary to condense hanging nodes into a matrix structure.
You will have to:
<ol>
<p>
A hyperball can be created using the function<br>
<code>void GridGenerator::hyper_ball(Triangulation<dim> &tria,const Point<dim> center=0.,const double radius=1.)</code><br>
-This will create a hyperball of given centre and radius where the location of the centre defaults to the origin and the radius to unity.
+This will create a hyperball of given centre and radius where the
+location of the centre defaults to the origin and the radius to
+unity. Note that the left figure is scaled a bit large, since the
+corner points of the outer square will later be the points on the
+circles surface in diagonal directions.
</p>
<table class="figure">
may have the wrong sign (plus instead of minus or vice versa).
A more detailed description of the problems
encountered in two dimensions can be found in the
-<a href="http://hermes.iwr.uni-heidelberg.de/~deal/doc/auto/kdoc/basic/DataIn.html" target="_top"> <code>DataIn</code> class description</a>.
+<a href="http://gaia.iwr.uni-heidelberg.de/~deal/doc/auto/kdoc/basic/DataIn.html" target="_top"> <code>DataIn</code> class description</a>.
</p>
<h1>The deal.II Tutorial</h1>
Your browser does not seem to understand frames. A version of this
tutorial that does not use frames can be found at
-<a href="toc.html">http://hermes.iwr.uni-heidelberg.de/~deal/doc/tutorial/00.fe_structure/toc.html</a>.
+<a href="toc.html">http://gaia.iwr.uni-heidelberg.de/~deal/doc/tutorial/chapter-1.elements/toc.html</a>.
</noframes>
</html>
<p>
Vector operations are supplied by the class <code><a
-href="http://hermes.iwr.uni-heidelberg.de/~deal/doc/auto/kdoc/lac/Vector.html">Vector</a></code>.
+href="http://gaia.iwr.uni-heidelberg.de/~deal/doc/auto/kdoc/lac/Vector.html">Vector</a></code>.
The first and most important operation on a vector is its
initialization using <code>void Vector::reinit(const usigned int N,
const bool fast=false)</code>, which resets the vector's size to
<p>The limitations of the gnuplot data format have been well described
in the
-<a href="http://hermes.iwr.uni-heidelberg.de/~deal/doc/auto/kdoc/basic/DataOut.html">
+<a href="http://gaia.iwr.uni-heidelberg.de/~deal/doc/auto/kdoc/basic/DataOut.html">
<code>DataOut</code> class description</a>:
</p>
<blockquote>
<p>The limitations mentioned above can to some extent be remedied,
and that is why there is also an option for high quality output.
For how this is done, we quote (again) the
-<a href="http://hermes.iwr.uni-heidelberg.de/~deal/doc/auto/kdoc/basic/DataOut.html">
+<a href="http://gaia.iwr.uni-heidelberg.de/~deal/doc/auto/kdoc/basic/DataOut.html">
<code>DataOut</code> class description</a>:
</p>
<code>zeldovich_solver</code> and <code>sunyaev_solver</code>.
Please note that in order to stick to the essentials this example
violates the
-<a href="http://hermes.iwr.uni-heidelberg.de/~deal/doc/auto/kdoc/base/ParameterHandler.html">
+<a href="http://gaia.iwr.uni-heidelberg.de/~deal/doc/auto/kdoc/base/ParameterHandler.html">
recommended style for parameter declaration</a>.
</p>
<span class="example">Example:</span>
We read parameters successively
from three different sources. This example was taken from
-the <a href="http://hermes.iwr.uni-heidelberg.de/~deal/doc/auto/kdoc/base/ParameterHandler.html"><code>ParameterHandler</code> class documentation</a>.
+the <a href="http://gaia.iwr.uni-heidelberg.de/~deal/doc/auto/kdoc/base/ParameterHandler.html"><code>ParameterHandler</code> class documentation</a>.
</p>
<pre class="example">
too large will also increase the required computing time. This number is
contained in the <code>AdditionalData</code> structure with a default of 30.
This solver is rather special, and for a detailed explanation you should
-<a href="http://hermes.iwr.uni-heidelberg.de/~deal/doc/auto/kdoc/lac/SolverGMRES.html">take a look at the detailed description of the <code>SolverGMRES</code>
+<a href="http://gaia.iwr.uni-heidelberg.de/~deal/doc/auto/kdoc/lac/SolverGMRES.html">take a look at the detailed description of the <code>SolverGMRES</code>
class</a>.
</p>
<h1>The deal.II Tutorial</h1>
Your browser does not seem to understand frames. A version of this
tutorial that does not use frames can be found at
-<a href="toc.html">http://gaia.iwr.uni-heidelberg.de/~deal/doc/tutorial/01.laplace/toc.html</a>.
+<a href="toc.html">http://gaia.iwr.uni-heidelberg.de/~deal/doc/tutorial/chapter-3.laplace/toc.html</a>.
</noframes>
</html>
advance through the chapters in their proper order. This tutorial contains the
complete code for every example program and can be used as a reference, too,
if you are looking for code to solve a specific problem with
- <acronym>deal.II</acronym>. The 0th chapter,
- <a href="00.fe_structure/index.html">Structure of a Finite
+ <acronym>deal.II</acronym>. The first chapter,
+ <a href="chapter-1.elements/index.html">Structure of a Finite
Element Program</a>, can also be used as a reference.
</p>
The structure of this tutorial is as follows:
<p>
- <h4><a href="00.fe_structure/index.html">Chapter 0: Basic Elements of a
+ <h4><a href="chapter-1.elements/index.html">Chapter 1: Basic Elements of a
Finite Element Program</a> </h4>
- <p> (also available in a <a href="00.fe_structure/toc.html">version without frames</a>)
+ <p> (also available in a <a href="chapter-1.elements/toc.html">version without frames</a>)
</p>
<p>We will discuss the various elements needed for a working
finite element program and some of the possibilities
programs.
</p>
- <h4><a href="step-by-step/index.html">Chapter 1: Various small
+ <h4><a href="chapter-2.step-by-step/index.html">Chapter 2: Various small
programs demonstrating aspects of the library</a></h4>
<p>
- (also available in a <a href="step-by-step/toc.html">version
+ (also available in a <a href="chapter-2.step-by-step/toc.html">version
without frames</a>)
</p>
<p>
program.
</p>
- <h4><a href="01.laplace/index.html">Chapter 2: The very simple Laplace
+ <h4><a href="chapter-2.laplace/index.html">Chapter 3: The very simple Laplace
Problem</a> </h4>
<p>
- (also available in a <a href="01.laplace/toc.html">version without frames</a>)
+ (also available in a <a href="chapter-3.laplace/toc.html">version without frames</a>)
</p>
<p>
NOTE: this example program is not finished and not a good
</p><p>
We will solve the stationary Laplace problem on a square grid with
boundary conditions of the form <code>cos(2*PI*x)cos(2*PI*y)</code>.
- You can also obtain the <a href="01.laplace/source.html">source code</a>.
+ You can also obtain the <a href="chapter-3.laplace/source.html">source code</a>.
</p>
<h3>Technical terms</h3>