2. If $\varepsilon=0$ then this is the stationary advection equation solved in
step-9.
-3. Define the <i>Peclet number</i>: $\mathcal{P}\coloneqq
-\|\boldsymbol{\beta}\| \cdot L/\varepsilon$. If $\mathcal{P}>1$, we say the
-problem is <i>advection-dominated</i>, else if $\mathcal{P}<1$ we will
-say the problem is <i>diffusion-dominated</i>. Here $L$ is the length
-scale of the domain.
+3. Define the <i>Peclet number</i>: $\mathcal{P}\:=\|\boldsymbol{\beta}\|
+\cdot L/\varepsilon$. If $\mathcal{P}>1$, we say the problem is
+<i>advection-dominated</i>, else if $\mathcal{P}<1$ we will say the problem is
+<i>diffusion-dominated</i>. Here $L$ is the length scale of the domain.
For the discussion in this tutorial we will be concerned with
advection-dominated flow.
// from <a
// href="https://link.springer.com/chapter/10.1007/978-3-540-34288-5_27"> On
// Discontinuity-Capturing Methods for Convection-Diffusion Equations by
- // Volker John and Petr Knobloch</a>
+ // Volker John and Petr Knobloch</a>.
template <int dim>
double compute_stabilization_delta(const double hk,
const double eps,