]> https://gitweb.dealii.org/ - dealii.git/commitdiff
New test for the abf element
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Mon, 31 Jul 2006 21:26:56 +0000 (21:26 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Mon, 31 Jul 2006 21:26:56 +0000 (21:26 +0000)
git-svn-id: https://svn.dealii.org/trunk@13552 0785d39b-7218-0410-832d-ea1e28bc413d

tests/fe/Makefile
tests/fe/abf_01.cc [new file with mode: 0644]

index b05e6093e0de3896614a8f35c12eb3c28e154e4d..7912ef45e67f765eb093cc94b3a753a2f1d6f906 100644 (file)
@@ -28,6 +28,7 @@ tests_x=fe_data_test traits fe_tools fe_tools_test mapping \
        q_* \
        interpolate_q1 \
        rt_* \
+       abf_* \
        rtdiff \
        rtn_* \
        interpolate_rt interpolate_rtn \
diff --git a/tests/fe/abf_01.cc b/tests/fe/abf_01.cc
new file mode 100644 (file)
index 0000000..2e132d0
--- /dev/null
@@ -0,0 +1,645 @@
+//----------------------------  abf_01.cc  ---------------------------
+//    abf_01.cc,v 1.3 2003/06/09 16:00:38 wolf Exp
+//    Version: 
+//
+//    Copyright (C) 2003, 2005, 2006 by the deal.II authors
+//
+//    This file is subject to QPL and may not be  distributed
+//    without copyright and license information. Please refer
+//    to the file deal.II/doc/license.html for the  text  and
+//    further information on this license.
+//
+//----------------------------  abf_01.cc  ---------------------------
+
+
+// Show the shape functions of the Raviart-Thomas element on the unit cell
+// Plots are gnuplot compatible if lines with desired prefix are selected.
+
+#include "../tests.h"
+#include <base/logstream.h>
+#include <fe/fe_raviart_thomas.h>
+
+#define PRECISION 2
+
+#include <fstream>
+
+#include <grid/grid_generator.h>
+#include <grid/grid_in.h>
+#include <grid/grid_out.h>
+#include <grid/tria_boundary_lib.h>
+
+#include <fe/mapping_q.h>
+
+#include <numerics/vectors.h>
+#include <numerics/matrices.h>
+#include <numerics/data_out.h>
+#include <lac/vector.h>
+#include <lac/solver_cg.h>
+#include <lac/precondition.h>
+#include <lac/vector_memory.h>
+#include <lac/sparsity_pattern.h>
+#include <lac/sparse_matrix.h>
+
+#include <base/function.h>
+#include <base/quadrature_lib.h>
+#include <dofs/dof_constraints.h>
+#include <dofs/dof_tools.h>
+
+#include <fe/fe_system.h>
+#include <fe/fe.h>
+#include <fe/fe_q.h>
+#include <fe/fe_values.h>
+#include <fe/fe_raviart_thomas.h>
+#include <fe/fe_abf.h>
+#include <fe/fe_dgq.h>
+
+
+
+
+
+/*
+ * Check the value of the derivative field.
+ */
+
+void EvaluateDerivative (DoFHandler<2> *dof_handler,
+                        Vector<double> &solution)
+{
+    // This quadrature rule determines the points, where the
+    // derivative will be evaluated.
+    QGauss<2> quad (3);
+    FEValues<2> fe_values (dof_handler->get_fe (), quad, 
+                          UpdateFlags(update_values    |
+                                      update_q_points  |
+                                      update_gradients |
+                                      update_JxW_values));
+
+    const unsigned int   n_q_points    = quad.n_quadrature_points;
+    const unsigned int   n_components   = dof_handler->get_fe().n_components();
+    const unsigned int dofs_per_cell = dof_handler->get_fe().dofs_per_cell;
+
+    // Cell iterators
+    DoFHandler<2>::active_cell_iterator cell = dof_handler->begin_active(),
+       endc = dof_handler->end();
+
+    double err_l2 = 0,
+      err_hdiv = 0;
+
+    std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+
+    for (; cell!=endc; ++cell)
+    {
+      cell->get_dof_indices (local_dof_indices);
+    
+       fe_values.reinit (cell);
+
+       // Get function values
+       std::vector<Vector<double> > this_value(n_q_points,
+                                               Vector<double>(n_components));
+       fe_values.get_function_values (solution, this_value);
+
+       // Get values from solution vector (For Trap.Rule)
+       std::vector<std::vector<Tensor<1,2> > >
+           grads_here (n_q_points, std::vector<Tensor<1,2> > (n_components));
+       fe_values.get_function_grads (solution, grads_here);
+
+       for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
+       {
+         //      double u0 = this_value[q_point](0);
+         //double v0 = this_value[q_point](1);
+
+         double u0 = 0;
+         double v0 = 0;
+         for (unsigned int i = 0; i < dofs_per_cell; ++i)
+           {
+             u0 += (solution (local_dof_indices[i]) *
+                    fe_values.shape_value_component(i, q_point, 0));
+             v0 += (solution (local_dof_indices[i]) *
+                    fe_values.shape_value_component(i, q_point, 1));
+           }
+         u0 -= 1.0;
+         v0 -= 1.0;
+
+         double dudx = grads_here[q_point][0][0];
+         double dvdy = grads_here[q_point][1][1];
+
+         err_l2 += (u0 * u0 + v0 * v0) * fe_values.JxW (q_point);
+         err_hdiv += (dudx + dvdy) * (dudx + dvdy) * fe_values.JxW (q_point);
+       }
+    }
+
+    deallog << "L2-Err=" << pow (err_l2, 0.5)
+           << ", Hdiv-Err=" << pow (err_hdiv, 0.5)
+           << std::endl;
+}
+
+
+template <int dim>
+void create_mass_matrix (const Mapping<dim>       &mapping,
+                        const DoFHandler<dim>    &dof,
+                        const Quadrature<dim>    &q,
+                        SparseMatrix<double>     &matrix,
+                        const Function<dim>   &rhs_function,
+                        Vector<double>        &rhs_vector,
+                        const Function<dim> * const coefficient = 0)
+{
+  UpdateFlags update_flags = UpdateFlags(update_values | update_JxW_values | update_q_points);
+  if (coefficient != 0)
+    update_flags = UpdateFlags (update_flags | update_q_points);
+  
+  FEValues<dim> fe_values (mapping, dof.get_fe(), q, update_flags);
+    
+  const unsigned int dofs_per_cell = fe_values.dofs_per_cell,
+                    n_q_points    = fe_values.n_quadrature_points;
+  const FiniteElement<dim>    &fe  = fe_values.get_fe();
+  const unsigned int n_components  = fe.n_components();
+
+  Assert(coefficient == 0 ||
+        coefficient->n_components==1 ||
+        coefficient->n_components==n_components, ExcInternalError());
+  
+  FullMatrix<double>  cell_matrix (dofs_per_cell, dofs_per_cell);
+  Vector<double> cell_vector (dofs_per_cell);
+  std::vector<double> coefficient_values (n_q_points);
+  std::vector<Vector<double> > coefficient_vector_values (n_q_points,
+                                                         Vector<double> (n_components));
+  
+  std::vector<unsigned int> dof_indices (dofs_per_cell);
+
+  std::vector<Vector<double> > rhs_values(n_q_points, Vector<double>(n_components));
+  
+  typename DoFHandler<dim>::active_cell_iterator cell = dof.begin_active (),
+      endc = dof.end ();
+  for (; cell!=endc; ++cell)
+    {
+      fe_values.reinit (cell);
+      
+      cell_matrix = 0;
+      cell->get_dof_indices (dof_indices);
+
+      const std::vector<double> &weights   = fe_values.get_JxW_values ();
+      rhs_function.vector_value_list (fe_values.get_quadrature_points(), rhs_values);
+      cell_vector = 0;
+      
+      if (coefficient != 0)
+       {
+         if (coefficient->n_components==1)
+           {
+             coefficient->value_list (fe_values.get_quadrature_points(),
+                                      coefficient_values);
+             for (unsigned int point=0; point<n_q_points; ++point)
+               {
+                 const double weight = fe_values.JxW(point);
+                 for (unsigned int i=0; i<dofs_per_cell; ++i)
+                   {
+                     const double v = fe_values.shape_value(i,point);
+                     for (unsigned int j=0; j<dofs_per_cell; ++j)
+                       {
+                         const double u = fe_values.shape_value(j,point);
+                         
+                         if ((n_components==1) ||
+                             (fe.system_to_component_index(i).first ==
+                              fe.system_to_component_index(j).first))
+                           cell_matrix(i,j) +=
+                             (u * v * weight * coefficient_values[point]);
+                       }
+                   }
+               }
+           }
+         else
+           {
+             coefficient->vector_value_list (fe_values.get_quadrature_points(),
+                                             coefficient_vector_values);
+             for (unsigned int point=0; point<n_q_points; ++point)
+               {
+                 const double weight = fe_values.JxW(point);
+                 for (unsigned int i=0; i<dofs_per_cell; ++i)
+                   {
+                     const double v = fe_values.shape_value(i,point);
+                     const unsigned int component_i=
+                       fe.system_to_component_index(i).first;
+                     for (unsigned int j=0; j<dofs_per_cell; ++j)
+                       {
+                         const double u = fe_values.shape_value(j,point);
+                         if ((n_components==1) ||
+                             (fe.system_to_component_index(j).first == component_i))
+                           cell_matrix(i,j) +=
+                             (u * v * weight *
+                              coefficient_vector_values[point](component_i));
+                       }
+                   }
+               }
+           }
+       }
+      else
+       {
+         // Compute eventual sign changes depending on the neighborhood
+         // between two faces.
+         std::vector<double> sign_change (dofs_per_cell, 1.0);
+         const unsigned int dofs_per_face = fe.dofs_per_face;
+         std::vector<unsigned int> face_dof_indices (dofs_per_face);
+
+         /* This code should now be in fe_poly_tensor.cc
+         for (unsigned int f = 2; f < 4; ++f)
+           {
+             typename DoFHandler<dim>::active_face_iterator face = cell->face (f);
+             if (!face->at_boundary ())
+               {
+                 unsigned int nn = cell->neighbor_of_neighbor (f);
+                 printf ("Face %i  NeigNeig %i\n", f, nn);
+                 if (nn < 2)
+                   {
+                     face->get_dof_indices (face_dof_indices);
+                     for (unsigned int j = 0; j < dofs_per_face; ++j)
+                       {
+                         sign_change[f * dofs_per_face + j] = -1.0;
+                         printf ("DoF %i\n", face_dof_indices[j]);
+                       }
+                   }
+               }
+           }
+         */
+
+         for (unsigned int point=0; point<n_q_points; ++point)
+           {
+             const double weight = fe_values.JxW(point);
+             //            const double weight = q.weight(point);
+             
+             std::vector<Vector<double> > val_vector (dofs_per_cell,
+                                                      Vector<double> (n_components));
+             
+             // Precompute the component values
+             for (unsigned int i=0; i < dofs_per_cell; ++i)
+               for (unsigned int comp_i = 0; comp_i < fe.n_components (); 
+                    ++comp_i)
+                 {
+                   val_vector[i](comp_i) = sign_change[i] * 
+                     fe_values.shape_value_component(i,point,comp_i);
+                 }
+             // Now eventually switch the sign of some of the ansatzfunctions.
+             // TODO
+             
+             for (unsigned int i=0; i<dofs_per_cell; ++i)
+               for (unsigned int comp_i = 0; comp_i < fe.n_components (); 
+                    ++comp_i)
+                 if (fe.get_nonzero_components(i)[comp_i] == true)
+                   {
+                     const double v = val_vector[i](comp_i);
+                     for (unsigned int j=0; j<dofs_per_cell; ++j)
+                       for (unsigned int comp_j = 0;
+                            comp_j < fe.n_components (); ++comp_j)
+                         if (fe.get_nonzero_components(j)[comp_j] == true)
+                           {
+                             const double u = val_vector[j](comp_j);
+                             if ((n_components==1) ||
+                                 (comp_i == comp_j))
+                               cell_matrix(i,j) += (u * v * weight);
+                           }
+                   }
+
+             for (unsigned int i=0; i<dofs_per_cell; ++i)
+               for (unsigned int comp_i = 0; comp_i < fe.n_components (); 
+                    ++comp_i)
+                 if (fe.get_nonzero_components(i)[comp_i] == true)
+                   {
+                     cell_vector(i) += rhs_values[point](comp_i) *
+                       val_vector[i](comp_i) * weights[point];
+                   }
+           }
+       }
+                                      // transfer everything into the
+                                      // global object. lock the
+                                      // matrix meanwhile
+      for (unsigned int i=0; i<dofs_per_cell; ++i)
+       for (unsigned int j=0; j<dofs_per_cell; ++j)
+         if ((n_components==1) ||
+             (cell_matrix (i,j) != 0.0))
+/*
+             (fe.system_to_component_index(i).first ==
+              fe.system_to_component_index(j).first))
+*/
+           matrix.add (dof_indices[i], dof_indices[j],
+                       cell_matrix(i,j));
+
+      for (unsigned int i=0; i<dofs_per_cell; ++i)
+       rhs_vector(dof_indices[i]) += cell_vector(i);
+    }
+}
+
+
+template <int dim>
+void create_right_hand_side (const Mapping<dim>    &mapping,
+                            const DoFHandler<dim> &dof_handler,
+                            const Quadrature<dim> &quadrature,
+                            const Function<dim>   &rhs_function,
+                            Vector<double>        &rhs_vector)
+{
+  const FiniteElement<dim> &fe  = dof_handler.get_fe();
+  Assert (fe.n_components() == rhs_function.n_components,
+         ExcInternalError());
+  Assert (rhs_vector.size() == dof_handler.n_dofs(),
+         ExcDimensionMismatch(rhs_vector.size(), dof_handler.n_dofs()));
+  rhs_vector = 0;
+  
+  UpdateFlags update_flags = UpdateFlags(update_values   |
+                                        update_q_points |
+                                        update_JxW_values);
+  FEValues<dim> fe_values (mapping, fe, quadrature, update_flags);
+
+  const unsigned int dofs_per_cell = fe_values.dofs_per_cell,
+                    n_q_points    = fe_values.n_quadrature_points,
+                    n_components  = fe.n_components();
+  
+  std::vector<unsigned int> dofs (dofs_per_cell);
+  Vector<double> cell_vector (dofs_per_cell);
+
+  typename DoFHandler<dim>::active_cell_iterator cell = dof_handler.begin_active(),
+                                                endc = dof_handler.end();
+
+  if (n_components==1)
+    {
+      std::vector<double> rhs_values(n_q_points);
+      
+      for (; cell!=endc; ++cell) 
+       {
+         fe_values.reinit(cell);
+         
+         const std::vector<double> &weights   = fe_values.get_JxW_values ();
+         rhs_function.value_list (fe_values.get_quadrature_points(), rhs_values);
+         
+         cell_vector = 0;
+         for (unsigned int point=0; point<n_q_points; ++point)
+           for (unsigned int i=0; i<dofs_per_cell; ++i) 
+             cell_vector(i) += rhs_values[point] *
+                               fe_values.shape_value(i,point) *
+                 weights[point];
+       
+         cell->get_dof_indices (dofs);
+         
+         for (unsigned int i=0; i<dofs_per_cell; ++i)
+           rhs_vector(dofs[i]) += cell_vector(i);
+       }
+    }
+  else
+    {
+      std::vector<Vector<double> > rhs_values(n_q_points, Vector<double>(n_components));
+      
+      for (; cell!=endc; ++cell) 
+       {
+         fe_values.reinit(cell);
+         
+         const std::vector<double> &weights   = fe_values.get_JxW_values ();
+         rhs_function.vector_value_list (fe_values.get_quadrature_points(), rhs_values);
+         
+         cell_vector = 0;
+         for (unsigned int point=0; point<n_q_points; ++point)
+           for (unsigned int i=0; i<dofs_per_cell; ++i)
+               for (unsigned int comp_i = 0; comp_i < fe.n_components (); 
+                    ++comp_i)
+                 //                if (fe.get_nonzero_components(i)[comp_i] == true)
+                   {
+                       double det = weights[point] / quadrature.weight(point);
+
+                       cell_vector(i) += rhs_values[point](comp_i) *
+                           fe_values.shape_value_component(i,point,comp_i) *
+                           weights[point];
+                   }
+         
+         cell->get_dof_indices (dofs);
+         
+         for (unsigned int i=0; i<dofs_per_cell; ++i)
+           rhs_vector(dofs[i]) += cell_vector(i);
+       }
+    }
+}
+
+
+
+//
+// This function replaces the deal.II implementation of the projection.
+// The purpose is to have more freedom in assembling the matrix.
+//
+
+template <int dim>
+void project (const Mapping<dim>       &mapping,
+             const DoFHandler<dim>    &dof,
+             const ConstraintMatrix   &constraints,
+             const Quadrature<dim>    &quadrature,
+             const Function<dim>      &function,
+             Vector<double>           &vec,
+             const bool                enforce_zero_boundary = false,
+             const Quadrature<dim-1>  & = QGauss2<dim-1>(),
+             const bool                project_to_boundary_first = false)
+{
+  Assert (dof.get_fe().n_components() == function.n_components,
+         ExcInternalError());
+  
+  const FiniteElement<dim> &fe = dof.get_fe();
+
+                                  // make up boundary values
+  std::map<unsigned int,double> boundary_values;
+
+  if (enforce_zero_boundary == true) 
+                                    // no need to project boundary
+                                    // values, but enforce
+                                    // homogeneous boundary values
+                                    // anyway
+    {
+                                      // loop over all boundary faces
+                                      // to get all dof indices of
+                                      // dofs on the boundary. note
+                                      // that in 3d there are cases
+                                      // where a face is not at the
+                                      // boundary, yet one of its
+                                      // lines is, and we should
+                                      // consider the degrees of
+                                      // freedom on it as boundary
+                                      // nodes. likewise, in 2d and
+                                      // 3d there are cases where a
+                                      // cell is only at the boundary
+                                      // by one vertex. nevertheless,
+                                      // since we do not support
+                                      // boundaries with dimension
+                                      // less or equal to dim-2, each
+                                      // such boundary dof is also
+                                      // found from some other face
+                                      // that is actually wholly on
+                                      // the boundary, not only by
+                                      // one line or one vertex
+      typename DoFHandler<dim>::active_face_iterator face = dof.begin_active_face(),
+                                                    endf = dof.end_face();
+      std::vector<unsigned int> face_dof_indices (fe.dofs_per_face);
+      for (; face!=endf; ++face)
+       if (face->at_boundary())
+         {
+           face->get_dof_indices (face_dof_indices);
+           for (unsigned int i=0; i<fe.dofs_per_face; ++i)
+                                              // enter zero boundary values
+                                              // for all boundary nodes
+                                              //
+                                              // we need not care about
+                                              // vector valued elements here,
+                                              // since we set all components
+             boundary_values[face_dof_indices[i]] = 0.;
+         };
+    }
+  else
+                                    // no homogeneous boundary values
+    if (project_to_boundary_first == true)
+                                      // boundary projection required
+      {
+/*
+                                        // set up a list of boundary functions for
+                                        // the different boundary parts. We want the
+                                        // @p{function} to hold on all parts of the
+                                        // boundary
+       typename FunctionMap<dim>::type boundary_functions;
+       for (unsigned char c=0; c<255; ++c)
+         boundary_functions[c] = &function;
+       project_boundary_values (dof, boundary_functions, q_boundary,
+                                boundary_values);
+*/
+      }
+
+
+                                  // set up mass matrix and right hand side
+  vec.reinit (dof.n_dofs());
+  SparsityPattern sparsity(dof.n_dofs(),
+                          dof.n_dofs(),
+                          dof.max_couplings_between_dofs());
+  DoFTools::make_sparsity_pattern (dof, sparsity);
+  constraints.condense (sparsity);
+  
+  SparseMatrix<double> mass_matrix (sparsity);
+  Vector<double> tmp (mass_matrix.n());
+
+  create_mass_matrix (mapping, dof, quadrature, mass_matrix, function, tmp);
+  //create_right_hand_side (mapping, dof, quadrature, function, tmp);
+  //printf ("RHS created\n");
+
+  constraints.condense (mass_matrix);
+  constraints.condense (tmp);
+  if (boundary_values.size() != 0)
+    MatrixTools::apply_boundary_values (boundary_values,
+                                       mass_matrix, vec, tmp,
+                                       true);
+
+  SolverControl           control(1000,1e-16);
+  PrimitiveVectorMemory<> memory;
+  SolverCG<>              cg(control,memory);
+
+  PreconditionSSOR<> prec;
+  prec.initialize(mass_matrix, 1.2);
+                                  // solve
+  cg.solve (mass_matrix, vec, tmp, prec);
+  
+                                  // distribute solution
+  constraints.distribute (vec);
+}
+
+
+int create_alternate_unitsquare (Triangulation<2> &tria)
+{
+  std::vector<Point<2> > points;
+
+  points.push_back (Point<2> (0.0, 0.0));
+  points.push_back (Point<2> (1.0, 0.0));
+  points.push_back (Point<2> (1.0, 0.5));
+  points.push_back (Point<2> (1.0, 1.0));
+  points.push_back (Point<2> (0.6, 0.5));
+  points.push_back (Point<2> (0.5, 1.0));
+  points.push_back (Point<2> (0.0, 1.0));
+
+  //points.push_back (Point<2> (0.0, 0.001));
+
+                                  // Prepare cell data
+  std::vector<CellData<2> > cells (3);
+  cells[0].vertices[0] = 0;
+  cells[0].vertices[1] = 1;
+  cells[0].vertices[2] = 4;
+  cells[0].vertices[3] = 2;
+  cells[0].material_id = 0;
+
+  cells[1].vertices[0] = 4;
+  cells[1].vertices[1] = 2;
+  cells[1].vertices[2] = 5;
+  cells[1].vertices[3] = 3;
+  cells[1].material_id = 0;
+
+  cells[2].vertices[0] = 0;
+  //cells[2].vertices[0] = 7;
+  cells[2].vertices[1] = 4;
+  cells[2].vertices[2] = 6;
+  cells[2].vertices[3] = 5;
+  cells[2].material_id = 0;
+
+  tria.create_triangulation (points, cells, SubCellData());
+
+  return (0);
+}
+
+
+
+int main (int /*argc*/, char **/*argv*/)
+{
+  std::ofstream logfile ("abf_01/output");
+  logfile.precision (PRECISION);
+  logfile.setf(std::ios::fixed);  
+  deallog.attach(logfile);
+  deallog.depth_console(0);
+  deallog.threshold_double(1.e-10);
+
+
+  Triangulation<2> tria_test;
+
+  create_alternate_unitsquare (tria_test);
+
+  for (Triangulation<2>::active_cell_iterator cell = tria_test.begin_active();
+       cell != tria_test.end(); ++cell)
+    {
+      deallog << "Cell " << cell << std::endl;
+      for (unsigned int v=0; v<4; ++v)
+       deallog << "    " << cell->vertex(v) << std::endl;
+    }
+  
+  
+//   tria_test.refine_global (1);
+//   tria_test.distort_random (0.25);
+
+  FE_ABF<2> fe (0);
+  deallog << "Dofs/cell " << fe.dofs_per_cell
+           << "Dofs/face " << fe.dofs_per_face << std::endl;
+
+  DoFHandler<2> *dof_handler;
+  dof_handler = new DoFHandler<2> (tria_test);
+  dof_handler->distribute_dofs (fe);
+
+  deallog << "Dofs total " << dof_handler->n_dofs () << std::endl;
+
+  Vector<double> solution(dof_handler->n_dofs ());
+  solution = 1;  
+
+  // Project solution onto FE field
+  ConstraintMatrix     hn_constraints;
+  hn_constraints.clear ();
+  DoFTools::make_hanging_node_constraints (*dof_handler, 
+                                          hn_constraints);
+  hn_constraints.close ();
+  MappingQ1<2> map_default;
+  project (map_default, *dof_handler, hn_constraints,
+          QGauss6<2> (), ConstantFunction<2>(1., 2),
+          solution);
+
+  EvaluateDerivative (dof_handler, solution);
+  solution.print (deallog.get_file_stream());
+
+  DataOut<2> *data_out = new DataOut<2>;
+  data_out->attach_dof_handler (*dof_handler);
+  data_out->add_data_vector (solution, "solution");
+  data_out->build_patches (4);
+
+  data_out->write_gnuplot (deallog.get_file_stream());
+
+  delete data_out;
+
+  delete (dof_handler);
+}

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.