]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Extend error estimator for variable coefficients.
authorwolf <wolf@0785d39b-7218-0410-832d-ea1e28bc413d>
Fri, 31 Jul 1998 15:00:12 +0000 (15:00 +0000)
committerwolf <wolf@0785d39b-7218-0410-832d-ea1e28bc413d>
Fri, 31 Jul 1998 15:00:12 +0000 (15:00 +0000)
git-svn-id: https://svn.dealii.org/trunk@465 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/deal.II/include/numerics/error_estimator.h
deal.II/deal.II/source/numerics/error_estimator.cc

index 6783955f487ab12009f411cca70b4900a7ee1a10..ee1a03a3a0866d2fa45f28b9d5a32d7569f45a6e 100644 (file)
@@ -36,7 +36,12 @@ class dVector;
  *  integrals computed here show superconvergence properties, i.e. they tend
  *  to zero faster than the error itself, thus ruling out the values as error
  *  indicators.
- *  
+ *
+ *  The error estimator really only estimates the error for the generalized
+ *  Poisson equation $-\nabla\cdot a(x) \nabla u = f$ with either Dirichlet
+ *  boundary conditions or generalized Neumann boundary conditions involving
+ *  the conormal derivative $a\frac{du}{dn} = g$.
+ *
  *  The error estimator returns a vector of estimated errors per cell which
  *  can be used to feed the #Triangulation<dim>::refine_*# functions.
  *
@@ -45,7 +50,7 @@ class dVector;
  *
  *  In principle, the implementation of the error estimation is simple: let
  *  $$ \eta_K^2 =
- *  \frac h{24} \int_{\partial K} \left[\frac{\partial u_h}{\partial n}\right]^2 do
+ *  \frac h{24} \int_{\partial K} \left[\frac{\partial u_h}{\partial n}\right]^2 do
  *  $$
  *  be the error estimator for cell $K$. $[\cdot]$ denotes the jump of the
  *  argument at the face. In the paper of Ainsworth, $h$ is divided by $24$,
@@ -107,7 +112,7 @@ class dVector;
  *
  *  \item The face belongs to a Neumann boundary.  In this case, the
  *    contribution of the face $F\in\partial K$ looks like
- *    $$ \int_F \left|g-\frac{\partial u_h}{\partial n}\right| ds $$
+ *    $$ \int_F \left|g-a\frac{\partial u_h}{\partial n}\right|^2 ds $$
  *    where $g$ is the Neumann boundary function.
  *
  *  \item No other boundary conditions are considered.
@@ -156,14 +161,22 @@ class KellyErrorEstimator {
                                      * guaranteed by the #map# data type.
                                      */
     typedef map<unsigned char,const Function<dim>*> FunctionMap;
-    
+
+                                    /**
+                                     * Implementation of the error estimator
+                                     * described above. You may give a
+                                     * coefficient, but there is a default
+                                     * value which denotes the constant
+                                     * coefficient with value one.
+                                     */
     static void estimate_error (const DoFHandler<dim>    &dof,
                                const Quadrature<dim-1>  &quadrature,
                                const FiniteElement<dim> &fe,
                                const Boundary<dim>      &boundary,
                                const FunctionMap        &neumann_bc,
                                const dVector            &solution,
-                               dVector                  &error);
+                               dVector                  &error,
+                               const Function<dim>      *coefficient = 0);
 
                                     /**
                                      * Exception
@@ -220,7 +233,8 @@ class KellyErrorEstimator {
                                             FEFaceValues<dim>   &fe_face_values_cell,
                                             FEFaceValues<dim>   &fe_face_values_neighbor,
                                             FaceIntegrals       &face_integrals,
-                                            const dVector       &solution);
+                                            const dVector       &solution,
+                                            const Function<dim> *coefficient);
 
                                     /**
                                      * The same applies as for the function
@@ -238,7 +252,8 @@ class KellyErrorEstimator {
                                               FEFaceValues<dim>    &fe_face_values,
                                               FESubfaceValues<dim> &fe_subface_values,
                                               FaceIntegrals        &face_integrals,
-                                              const dVector        &solution);
+                                              const dVector        &solution,
+                                              const Function<dim> *coefficient);
 };
 
 
index bbc196654f42a2bc3e84eae8e0b808989f9d3371..a03e61414747bd1e391128084b0c628069c932f0 100644 (file)
@@ -32,7 +32,8 @@ void KellyErrorEstimator<1>::estimate_error (const DoFHandler<1> &,
                                             const Boundary<1> &,
                                             const FunctionMap &,
                                             const dVector &,
-                                            dVector &) {
+                                            dVector &,
+                                            const Function<1> *) {
   Assert(false, ExcNotImplemented());
 };
 
@@ -46,7 +47,8 @@ void KellyErrorEstimator<dim>::estimate_error (const DoFHandler<dim>    &dof,
                                               const Boundary<dim>      &boundary,
                                               const FunctionMap        &neumann_bc,
                                               const dVector            &solution,
-                                              dVector                  &error) {
+                                              dVector                  &error,
+                                              const Function<dim> *coefficient) {
   Assert (neumann_bc.find(255) == neumann_bc.end(),
          ExcInvalidBoundaryIndicator());
 
@@ -138,7 +140,8 @@ void KellyErrorEstimator<dim>::estimate_error (const DoFHandler<dim>    &dof,
                                       fe_face_values_cell,
                                       fe_face_values_neighbor,
                                       face_integrals,
-                                      solution);
+                                      solution,
+                                      coefficient);
        else
                                           // otherwise we need to do some
                                           // special computations which do
@@ -148,7 +151,8 @@ void KellyErrorEstimator<dim>::estimate_error (const DoFHandler<dim>    &dof,
                                         n_q_points,
                                         fe_face_values_cell,
                                         fe_subface_values,
-                                        face_integrals, solution);
+                                        face_integrals, solution,
+                                        coefficient);
       };
 
 
@@ -190,7 +194,8 @@ void KellyErrorEstimator<1>::integrate_over_regular_face (const active_cell_iter
                                                          FEFaceValues<1>        &,
                                                          FEFaceValues<1>        &,
                                                          FaceIntegrals          &,
-                                                         const dVector          &) {
+                                                         const dVector          &,
+                                                         const Function<1>      *) {
   Assert (false, ExcInternalError());
 };
 
@@ -206,7 +211,8 @@ integrate_over_irregular_face (const active_cell_iterator &,
                               FEFaceValues<1>            &,
                               FESubfaceValues<1>         &,
                               FaceIntegrals              &,
-                              const dVector              &) {
+                              const dVector              &,
+                              const Function<1>          *) {
   Assert (false, ExcInternalError());
 };
 
@@ -225,7 +231,8 @@ integrate_over_regular_face (const active_cell_iterator &cell,
                             FEFaceValues<dim>          &fe_face_values_cell,
                             FEFaceValues<dim>          &fe_face_values_neighbor,
                             FaceIntegrals              &face_integrals,
-                            const dVector              &solution) {
+                            const dVector              &solution,
+                            const Function<dim>        *coefficient) {
   const DoFHandler<dim>::face_iterator face = cell->face(face_no);
   
                                   // initialize data of the restriction
@@ -238,7 +245,7 @@ integrate_over_regular_face (const active_cell_iterator &cell,
                                   // points
                                   //
                                   // let psi be a short name for
-                                  // [grad u_h]
+                                  // [grad u_h]
   vector<Point<dim> > psi(n_q_points);
   fe_face_values_cell.get_function_grads (solution, psi);
   
@@ -311,7 +318,7 @@ integrate_over_regular_face (const active_cell_iterator &cell,
   
   for (unsigned int point=0; point<n_q_points; ++point)
     phi[point] = psi[point]*normal_vectors[point];
-  
+
   
   if (face->at_boundary() == true)
                                     // neumann boundary face. compute
@@ -334,11 +341,22 @@ integrate_over_regular_face (const active_cell_iterator &cell,
        phi[point] -= g[point];
     };
   
+                                  // if a coefficient was given: use that
+                                  // to scale the jump in the gradient
+  if (coefficient != 0)
+    {
+      vector<double>      coefficient_values (n_q_points);
+      coefficient->value_list (fe_face_values_cell.get_quadrature_points(),
+                              coefficient_values);
+      for (unsigned int point=0; point<n_q_points; ++point)
+       phi[point] *= coefficient_values[point];
+    };
+      
   
                                   // now phi contains the following:
-                                  // - for an internal face, phi=[du/dn]
+                                  // - for an internal face, phi=[du/dn]
                                   // - for a neumann boundary face,
-                                  //   phi=du/dn-g
+                                  //   phi=du/dn-g
                                   // each component being the
                                   // mentioned value at one of the
                                   // quadrature points
@@ -368,7 +386,8 @@ integrate_over_irregular_face (const active_cell_iterator &cell,
                               FEFaceValues<dim>          &fe_face_values,
                               FESubfaceValues<dim>       &fe_subface_values,
                               FaceIntegrals              &face_integrals,
-                              const dVector              &solution) {
+                              const dVector              &solution,
+                              const Function<dim>        *coefficient) {
   const DoFHandler<dim>::cell_iterator neighbor = cell->neighbor(face_no);
   Assert (neighbor.state() == valid, ExcInternalError());
   Assert (neighbor->has_children(), ExcInternalError());
@@ -378,7 +397,7 @@ integrate_over_irregular_face (const active_cell_iterator &cell,
                                   // points
                                   //
                                   // let psi be a short name for
-                                  // [grad u_h]
+                                  // [grad u_h]
   vector<Point<dim> > psi(n_q_points);
 
                                   // store which number #cell# has in the
@@ -428,23 +447,35 @@ integrate_over_irregular_face (const active_cell_iterator &cell,
                 psi.begin(),
                 minus<Point<dim> >());
 
-                                  // next we have to multiply this with
-                                  // the normal vector. Since we have
-                                  // taken the difference of gradients
-                                  // for internal faces, we may chose
-                                  // the normal vector of one cell,
-                                  // taking that of the neighbor
-                                  // would only change the sign. We take
-                                  // the outward normal.
-                                  //
-                                  // let phi be the name of the integrand
+                                      // next we have to multiply this with
+                                      // the normal vector. Since we have
+                                      // taken the difference of gradients
+                                      // for internal faces, we may chose
+                                      // the normal vector of one cell,
+                                      // taking that of the neighbor
+                                      // would only change the sign. We take
+                                      // the outward normal.
+                                      //
+                                      // let phi be the name of the integrand
       vector<double> phi(n_q_points,0);
       const vector<Point<dim> > &normal_vectors(fe_face_values.
                                                get_normal_vectors());
   
       for (unsigned int point=0; point<n_q_points; ++point)
        phi[point] = psi[point]*normal_vectors[point];
-                                      // take the square of the phi[i]
+      
+                                      // if a coefficient was given: use that
+                                      // to scale the jump in the gradient
+      if (coefficient != 0)
+       {
+         vector<double>      coefficient_values (n_q_points);
+         coefficient->value_list (fe_face_values.get_quadrature_points(),
+                                  coefficient_values);
+         for (unsigned int point=0; point<n_q_points; ++point)
+           phi[point] *= coefficient_values[point];
+       };
+
+                                  // take the square of the phi[i]
                                       // for integration
       transform (phi.begin(), phi.end(),
                 phi.begin(), ptr_fun(sqr));

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.