]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Simplify some parts of assembling cell terms.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Tue, 20 May 2008 02:53:03 +0000 (02:53 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Tue, 20 May 2008 02:53:03 +0000 (02:53 +0000)
git-svn-id: https://svn.dealii.org/trunk@16129 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-33/step-33.cc

index 2c29da8535b2c1db10f94fce511da94bfd70395a..dcf0ea8529b22f8d9b9eae332d21b2f2a137d67b 100644 (file)
 #include <Sacado.hpp>
 
 
-                                // And this again is C++:
+                                // And this again is C++, as well as a header
+                                // file from BOOST that declares a class
+                                // representing an array of fixed size:
 #include <iostream>
 #include <fstream>
 #include <vector>
 #include <memory>
 
+#include <boost/array.hpp>
+
                                 // To end this section, introduce everythin
                                 // in the dealii library into the current
                                 // namespace:
@@ -285,20 +289,16 @@ struct EulerEquations
                                     // rectangular array of numbers
                                     // right away.
                                     //
-                                    // We templatize the numerical
-                                    // type of the flux function so
-                                    // that we may use the automatic
-                                    // differentiation type here.
-                                    // The flux functions are defined
-                                    // in terms of the conserved
-                                    // variables $\rho w_0, \dots,
-                                    // \rho w_{d-1}, \rho, E$, so
-                                    // they do not look exactly like
-                                    // the Euler equations one is
-                                    // used to seeing.
-    template <typename number>
+                                    // We templatize the numerical type of
+                                    // the flux function so that we may use
+                                    // the automatic differentiation type
+                                    // here.  Similarly, we will call the
+                                    // function with different input vector
+                                    // data types, so we templatize on it as
+                                    // well:
+    template <typename InputVector, typename number>
     static
-    void flux_matrix (const std::vector<number> &W,
+    void flux_matrix (const InputVector &W,
                      number (&flux)[n_components][dim])
       {
                                         // First compute the pressure that
@@ -356,8 +356,8 @@ struct EulerEquations
        Sacado::Fad::DFad<double> iflux[n_components][dim];
        Sacado::Fad::DFad<double> oflux[n_components][dim];
          
-       flux_matrix(Wplus, iflux);
-       flux_matrix(Wminus, oflux);
+       flux_matrix (Wplus, iflux);
+       flux_matrix (Wminus, oflux);
          
        for (unsigned int di=0; di<n_components; ++di)
          {
@@ -1615,70 +1615,47 @@ void ConservationLaw<dim>::setup_system ()
                                  // The actual implementation of the
                                  // assembly on these objects is done
                                  // in the following functions.
+                                //
+                                // At the top of the function we do the usual
+                                // housekeeping: allocate FEValues,
+                                // FEFaceValues, and FESubfaceValues objects
+                                // necessary to do the integrations on cells,
+                                // faces, and subfaces (in case of adjoining
+                                // cells on different refinement
+                                // levels). Note that we don't need all
+                                // information (like values, gradients, or
+                                // real locations of quadrature points) for
+                                // all of these objects, so we only let the
+                                // FEValues classes whatever is actually
+                                // necessary by specifying the minimal set of
+                                // UpdateFlags. For example, when using a
+                                // FEFaceValues object for the neighboring
+                                // cell we only need the shape values: Given
+                                // a specific face, the quadrature points and
+                                // <code>JxW</code> values are the same as
+                                // for the current cells, and the normal
+                                // vectors are known to be the negative of
+                                // the normal vectors of the current cell.
 template <int dim>
 void ConservationLaw<dim>::assemble_system ()
 {
   const unsigned int dofs_per_cell = dof_handler.get_fe().dofs_per_cell;
 
-                                  // We track the dofs on this cell and (if necessary)
-                                  // the adjacent cell.
-  std::vector<unsigned int> dofs (dofs_per_cell);
-  std::vector<unsigned int> dofs_neighbor (dofs_per_cell);
-
-                                  // First we create the
-                                  // ``UpdateFlags'' for the
-                                  // ``FEValues'' and the
-                                  // ``FEFaceValues'' objects.
-  const UpdateFlags update_flags = update_values
-                                  | update_gradients
-                                  | update_q_points
-                                  | update_JxW_values,
-
-                                  // Note, that on faces we do not
-                                  // need gradients but we need
-                                  // normal vectors.
-              face_update_flags = update_values
-                                  | update_q_points
-                                  | update_JxW_values
-                                  | update_normal_vectors,
-  
-                                  // On the neighboring cell we only
-                                  // need the shape values. Given a
-                                  // specific face, the quadrature
-                                  // points and `JxW values' are the
-                                  // same as for the current cells,
-                                  // the normal vectors are known to
-                                  // be the negative of the normal
-                                  // vectors of the current cell.
-      neighbor_face_update_flags = update_values;
+  std::vector<unsigned int> dof_indices (dofs_per_cell);
+  std::vector<unsigned int> dof_indices_neighbor (dofs_per_cell);
+
+  const UpdateFlags update_flags               = update_values
+                                                | update_gradients
+                                                | update_q_points
+                                                | update_JxW_values,
+                   face_update_flags          = update_values
+                                                | update_q_points
+                                                | update_JxW_values
+                                                | update_normal_vectors,
+                   neighbor_face_update_flags = update_values;
    
-                                  // Then we create the ``FEValues''
-                                  // object. Note, that since version
-                                  // 3.2.0 of deal.II the constructor
-                                  // of this class takes a
-                                  // ``Mapping'' object as first
-                                  // argument. Although the
-                                  // constructor without ``Mapping''
-                                  // argument is still supported it
-                                  // is recommended to use the new
-                                  // constructor. This reduces the
-                                  // effect of `hidden magic' (the
-                                  // old constructor implicitely
-                                  // assumes a ``MappingQ1'' mapping)
-                                  // and makes it easier to change
-                                  // the mapping object later.
-  FEValues<dim> fe_v (mapping, fe, quadrature, update_flags);
-  
-                                  // Similarly we create the
-                                  // ``FEFaceValues'' and
-                                  // ``FESubfaceValues'' objects for
-                                  // both, the current and the
-                                  // neighboring cell. Within the
-                                  // following nested loop over all
-                                  // cells and all faces of the cell
-                                  // they will be reinited to the
-                                  // current cell and the face (and
-                                  // subface) number.
+  FEValues<dim>        fe_v                  (mapping, fe, quadrature,
+                                             update_flags);
   FEFaceValues<dim>    fe_v_face             (mapping, fe, face_quadrature,
                                              face_update_flags);
   FESubfaceValues<dim> fe_v_subface          (mapping, fe, face_quadrature,
@@ -1688,204 +1665,295 @@ void ConservationLaw<dim>::assemble_system ()
   FESubfaceValues<dim> fe_v_subface_neighbor (mapping, fe, face_quadrature,
                                              neighbor_face_update_flags);
 
-                                  // Furthermore we need some cell
-                                  // iterators.
+                                  // Then loop over all cells, initialize the
+                                  // FEValues object for the current cell and
+                                  // call the function that assembles the
+                                  // problem on this cell.
   typename DoFHandler<dim>::active_cell_iterator
     cell = dof_handler.begin_active(),
     endc = dof_handler.end();
-
-                                  // Now we start the loop over all
-                                  // active cells.
   for (; cell!=endc; ++cell) 
     {
-      
-                                      // Now we reinit the ``FEValues''
-                                      // object for the current cell
       fe_v.reinit (cell);
+      cell->get_dof_indices (dof_indices);
+
+      assemble_cell_term(fe_v, dof_indices);
+
+                                      // Then loop over all the faces of this
+                                       // cell.  If a face is part of the
+                                       // external boundary, then assemble
+                                       // boundary conditions there (the fifth
+                                       // argument to
+                                       // <code>assemble_face_terms</code>
+                                       // indicates whether we are working on
+                                       // an external or internal face; if it
+                                       // is an external face, the fourth
+                                       // argument denoting the degrees of
+                                       // freedom indices of the neighbor is
+                                       // ignores, so we pass an empty
+                                       // vector):
+      for (unsigned int face_no=0; face_no<GeometryInfo<dim>::faces_per_cell;
+          ++face_no)
+       if (cell->at_boundary(face_no))
+         {
+           fe_v_face.reinit (cell, face_no);
+           assemble_face_term (face_no, fe_v_face,
+                               fe_v_face,
+                               dof_indices,
+                               std::vector<unsigned int>(),
+                               true,
+                               cell->face(face_no)->boundary_indicator(),
+                               cell->face(face_no)->diameter());
+         }
 
-                                       // Collect the local dofs and
-                                       // asssemble the cell term.
-      cell->get_dof_indices (dofs);
-
-      assemble_cell_term(fe_v, dofs);
-
-                                       // We use the DG style loop through faces
-                                       // to determine if we need to apply a
-                                       // 'hanging node' flux calculation or a boundary
-                                       // computation.
-      for (unsigned int face_no=0; face_no<GeometryInfo<dim>::faces_per_cell; ++face_no)
-       {
-         if (cell->at_boundary(face_no))
-           {
-                                              // We reinit the
-                                              // ``FEFaceValues''
-                                              // object to the
-                                              // current face
-             fe_v_face.reinit (cell, face_no);
-
-                                              // and assemble the
-                                              // corresponding face
-                                              // terms.  We send the same
-                                               // fe_v and dofs as described
-                                               // in the assembly routine.
-             assemble_face_term(face_no, fe_v_face,
-                                fe_v_face,
-                                dofs,
-                                dofs,
-                                true,
-                                cell->face(face_no)->boundary_indicator(),
-                                cell->face(face_no)->diameter());
-           }
-         else
-           {
-                                              // Now we are not on
-                                              // the boundary of the
-                                              // domain, therefore
-                                              // there must exist a
-                                              // neighboring cell.
-             typename DoFHandler<dim>::cell_iterator neighbor=
-               cell->neighbor(face_no);;
-
-             if (cell->face(face_no)->has_children())
-               {
-                                                  // case I: This cell refined compared to neighbor
-
-                 const unsigned int neighbor2=
-                   cell->neighbor_of_neighbor(face_no);
-                 
+                                      // The alternative is that we are
+                                      // dealing with an internal face. There
+                                      // are two cases that we need to
+                                      // distinguish: that this is a normal
+                                      // face between two cells at the same
+                                      // refinement level, and that it is a
+                                      // face between two cells of the
+                                      // different refinement levels.
+                                      //
+                                      // In the first case, there is nothing
+                                      // we need to do: we are using a
+                                      // continuous finite element, and face
+                                      // terms do not appear in the bilinear
+                                      // form in this case. The second case
+                                      // usually does not lead to face terms
+                                      // either if we enforce hanging node
+                                      // constraints strongly (as in all
+                                      // previous tutorial programs so far
+                                      // whenever we used continuous finite
+                                      // elements -- this enforcement is done
+                                      // by the ConstraintMatrix class
+                                      // together with
+                                      // DoFTools::make_hanging_node_constraints). In
+                                      // the current program, however, we opt
+                                      // to enforce continuity weakly at
+                                      // faces between cells of different
+                                      // refinement level, for two reasons:
+                                      // (i) because we can, and more
+                                      // importantly (ii) because we would
+                                      // have to thread the automatic
+                                      // differentiation we use to compute
+                                      // the elements of the Newton matrix
+                                      // from the residual through the
+                                      // operations of the ConstraintMatrix
+                                      // class. This would be possible, but
+                                      // is not trivial, and so we choose
+                                      // this alternative approach.
+                                      //
+                                      // What needs to be decided is which
+                                      // side of an interface between two
+                                      // cells of different refinement level
+                                      // we are sitting on.
+                                      //
+                                      // Let's take the case where the
+                                      // neighbor is more refined first. We
+                                      // then have to loop over the children
+                                      // of the face of the current cell and
+                                      // integrate on each of them. We
+                                      // sprinkle a couple of assertions into
+                                      // the code to ensure that our
+                                      // reasoning trying to figure out which
+                                      // of the neighbor's children's faces
+                                      // coincides with a given subface of
+                                      // the current cell's faces is correct
+                                      // -- a bit of defensive programming
+                                      // never hurts.
+                                      //
+                                      // We then call the function that
+                                      // integrates over faces; since this is
+                                      // an internal face, the fifth argument
+                                      // is false, and the sixth one is
+                                      // ignored so we pass an invalid value
+                                      // again:
+       else
+         {
+           if (cell->neighbor(face_no)->has_children())
+             {
+               const unsigned int neighbor2=
+                 cell->neighbor_of_neighbor(face_no);
                  
-                                                  // We loop over
-                                                  // subfaces
-                 for (unsigned int subface_no=0;
-                      subface_no<GeometryInfo<dim>::subfaces_per_face;
-                      ++subface_no)
-                   {
-                     typename DoFHandler<dim>::active_cell_iterator
-                        neighbor_child
-                        = cell->neighbor_child_on_subface (face_no, subface_no);
-
-                     Assert (neighbor_child->face(neighbor2) == cell->face(face_no)->child(subface_no),
-                             ExcInternalError());
-                     Assert (!neighbor_child->has_children(), ExcInternalError());
-
-                     fe_v_subface.reinit (cell, face_no, subface_no);
-                     fe_v_face_neighbor.reinit (neighbor_child, neighbor2);
-                     neighbor_child->get_dof_indices (dofs_neighbor);
-
-                                                      // Assemble as if we are working with
-                                                      // a DG element.
-                     assemble_face_term(face_no, fe_v_subface,
-                                        fe_v_face_neighbor,
-                                        dofs,
-                                        dofs_neighbor,
-                                        false,
-                                        numbers::invalid_unsigned_int,
-                                        neighbor_child->diameter());                 
-                   }
-                                                  // End of ``if
-                                                  // (face->has_children())''
-               }
-             else
-               {
-                                                  // We have no children, but 
-                                                  // the neighbor cell may be refine
-                                                  // compared to use
-                 neighbor->get_dof_indices (dofs_neighbor);
-                 if (neighbor->level() != cell->level()) 
-                   {
-                                                      // case II: This is refined compared to neighbor
-                     Assert(neighbor->level() < cell->level(), ExcInternalError());
-                     const std::pair<unsigned int, unsigned int> faceno_subfaceno=
-                       cell->neighbor_of_coarser_neighbor(face_no);
-                     const unsigned int neighbor_face_no=faceno_subfaceno.first,
-                                     neighbor_subface_no=faceno_subfaceno.second;
-
-                     Assert (neighbor->neighbor_child_on_subface (neighbor_face_no,
-                                                                   neighbor_subface_no)
-                              == cell,
-                              ExcInternalError());
-
-                                                      // Reinit the
-                                                      // appropriate
-                                                      // ``FEFaceValues''
-                                                      // and assemble
-                                                      // the face
-                                                      // terms.
-                     fe_v_face.reinit (cell, face_no);
-                     fe_v_subface_neighbor.reinit (neighbor, neighbor_face_no,
-                                                   neighbor_subface_no);
+               for (unsigned int subface_no=0;
+                    subface_no<GeometryInfo<dim>::subfaces_per_face;
+                    ++subface_no)
+                 {
+                   const typename DoFHandler<dim>::active_cell_iterator
+                     neighbor_child
+                     = cell->neighbor_child_on_subface (face_no, subface_no);
+
+                   Assert (neighbor_child->face(neighbor2) ==
+                           cell->face(face_no)->child(subface_no),
+                           ExcInternalError());
+                   Assert (neighbor_child->has_children() == false,
+                           ExcInternalError());
+
+                   fe_v_subface.reinit (cell, face_no, subface_no);
+                   fe_v_face_neighbor.reinit (neighbor_child, neighbor2);
+
+                   neighbor_child->get_dof_indices (dof_indices_neighbor);
+
+                   assemble_face_term(face_no, fe_v_subface,
+                                      fe_v_face_neighbor,
+                                      dof_indices,
+                                      dof_indices_neighbor,
+                                      false,
+                                      numbers::invalid_unsigned_int,
+                                      neighbor_child->diameter());                   
+                 }
+             }
+
+                                            // The other possibility we have
+                                            // to care for is if the neighbor
+                                            // is coarser than the current
+                                            // cell (in particular, because
+                                            // of the usual restriction of
+                                            // only one hanging node per
+                                            // face, the neighbor must be
+                                            // exactly one level coarser than
+                                            // the current cell, something
+                                            // that we check with an
+                                            // assertion). Again, we then
+                                            // integrate over this interface:
+           else if (cell->neighbor(face_no)->level() != cell->level())
+             {
+               const typename DoFHandler<dim>::cell_iterator
+                 neighbor = cell->neighbor(face_no);
+               Assert(neighbor->level() == cell->level()-1,
+                      ExcInternalError());
+
+               neighbor->get_dof_indices (dof_indices_neighbor);
+
+               const std::pair<unsigned int, unsigned int>
+                 faceno_subfaceno = cell->neighbor_of_coarser_neighbor(face_no);
+               const unsigned int neighbor_face_no    = faceno_subfaceno.first,
+                                  neighbor_subface_no = faceno_subfaceno.second;
+
+               Assert (neighbor->neighbor_child_on_subface (neighbor_face_no,
+                                                            neighbor_subface_no)
+                       == cell,
+                       ExcInternalError());
+
+               fe_v_face.reinit (cell, face_no);
+               fe_v_subface_neighbor.reinit (neighbor,
+                                             neighbor_face_no,
+                                             neighbor_subface_no);
                      
-                     assemble_face_term(face_no, fe_v_face,
-                                        fe_v_subface_neighbor,
-                                        dofs,
-                                        dofs_neighbor,
-                                        false,
-                                        numbers::invalid_unsigned_int,
-                                        cell->face(face_no)->diameter());
-                   }
-
-               } 
-                                              // End of ``face not at boundary'':
-           }
-                                          // End of loop over all faces:
-       } 
-      
-                                      // End iteration through cells.
+               assemble_face_term(face_no, fe_v_face,
+                                  fe_v_subface_neighbor,
+                                  dof_indices,
+                                  dof_indices_neighbor,
+                                  false,
+                                  numbers::invalid_unsigned_int,
+                                  cell->face(face_no)->diameter());
+             }
+         }
     } 
 
-                                  // Notify Epetra that the matrix is done.
+                                  // After all this assembling, notify the
+                                  // Trilinos matrix object that the matrix
+                                  // is done:
   Matrix->FillComplete();
 }
 
 
                                 // @sect4{ConservationLaw::assemble_cell_term}
                                 //
-                                 // Assembles the cell term, adding minus the residual
-                                 // to the right hand side, and adding in the Jacobian
-                                 // contributions.
+                                 // This function assembles the cell term by
+                                 // computing the cell part of the residual,
+                                 // adding its negative to the right hand side
+                                 // vector, and adding its derivative with
+                                 // respect to the local variables to the
+                                 // Jacobian (i.e. the Newton matrix).
+                                //
+                                // At the top, do the usual housekeeping in
+                                // terms of allocating some local variables
+                                // that we will need later. In particular, we
+                                // will allocate variables that will hold the
+                                // values of the current solution $W_{n+1}^k$
+                                // after the $k$th Newton iteration (variable
+                                // <code>W</code>), the previous time step's
+                                // solution $W_{n}$ (variable
+                                // <code>W_old</code>), as well as the linear
+                                // combination $\theta W_{n+1}^k +
+                                // (1-\theta)W_n$ that results from choosing
+                                // different time stepping schemes (variable
+                                // <code>W_theta</code>).
+                                //
+                                // In addition to these, we need the
+                                // gradients of the current variables.  It is
+                                // a bit of a shame that we have to compute
+                                // these; we almost don't.  The nice thing
+                                // about a simple conservation law is that
+                                // the flux doesn't generally involve any
+                                // gradients.  We do need these, however, for
+                                // the diffusion stabilization.
+                                //
+                                // The actual format in which we store these
+                                // variables requires some
+                                // explanation. First, we need values at each
+                                // quadrature point for each of the
+                                // <code>EulerEquations::n_components</code>
+                                // components of the solution vector. This
+                                // makes for a two-dimensional table for
+                                // which we use deal.II's Table class (this
+                                // is more efficient than
+                                // <code>std::vector@<std::vector@<T@>
+                                // @></code> because it only needs to
+                                // allocate memory once, rather than once for
+                                // each element of the outer
+                                // vector). Similarly, the gradient is a
+                                // three-dimensional table, which the Table
+                                // class also supports.
+                                //
+                                // Secondly, we want to use automatic
+                                // differentiation. To this end, we use the
+                                // Sacado::Fad::DFad template for everything
+                                // that is a computed from the variables with
+                                // respect to which we would like to compute
+                                // derivatives. This includes the current
+                                // solution and gradient at the quadrature
+                                // points (which are linear combinations of
+                                // the degrees of freedom) as well as
+                                // everything that is computed from them such
+                                // as the residual, but not the previous time
+                                // step's solution. These variables are all
+                                // found in the first part of the function:
 template <int dim>
-void ConservationLaw<dim>::assemble_cell_term (const FEValues<dim>             &fe_v,
-                                              const std::vector<unsigned int> &dofs) 
+void
+ConservationLaw<dim>::
+assemble_cell_term (const FEValues<dim>             &fe_v,
+                   const std::vector<unsigned int> &dof_indices) 
 {
-  unsigned int dofs_per_cell = fe_v.dofs_per_cell;
-  unsigned int n_q_points = fe_v.n_quadrature_points;
-
-                                  // We will define the dofs on this cell in these fad variables.
-  std::vector<Sacado::Fad::DFad<double> > DOF(dofs_per_cell);
+  const unsigned int dofs_per_cell = fe_v.dofs_per_cell;
+  const unsigned int n_q_points    = fe_v.n_quadrature_points;
 
-                                  // Values of the conservative variables at the quadrature points.
-  std::vector<std::vector<Sacado::Fad::DFad<double> > > W (n_q_points,
-                                                          std::vector<Sacado::Fad::DFad<double> >(EulerEquations<dim>::n_components));
+  Table<2,Sacado::Fad::DFad<double> >
+    W (n_q_points, EulerEquations<dim>::n_components);
 
-                                  // Values at the last time step of the conservative variables.
-                                  // Note that these do not use fad variables, since they do
-                                  // not depend on the 'variables to be sought'=DOFS.
-  std::vector<std::vector<double > > Wl (n_q_points,
-                                        std::vector<double >(EulerEquations<dim>::n_components));
+  Table<2,double>
+    W_old (n_q_points, EulerEquations<dim>::n_components);
 
-                                  // Here we will hold the averaged values of the conservative
-                                  // variables that we will linearize around (cn=Crank Nicholson).
-  std::vector<std::vector<Sacado::Fad::DFad<double> > > Wcn (n_q_points,
-                                                            std::vector<Sacado::Fad::DFad<double> >(EulerEquations<dim>::n_components));
-
-                                  // Gradients of the current variables.  It is a
-                                  // bit of a shame that we have to compute these; we almost don't.
-                                  // The nice thing about a simple conservation law is that the
-                                  // the flux doesn't generally involve any gradients.  We do
-                                  // need these, however, for the diffusion stabilization. 
-  std::vector<std::vector<std::vector<Sacado::Fad::DFad<double> > > > Wgrads (n_q_points,
-                                                                             std::vector<std::vector<Sacado::Fad::DFad<double> > >(EulerEquations<dim>::n_components,
-                                                                                                                                   std::vector<Sacado::Fad::DFad<double> >(dim)));
+  std::vector<boost::array<Sacado::Fad::DFad<double>,EulerEquations<dim>::n_components> >
+    W_theta (n_q_points);
 
+  Table<3,Sacado::Fad::DFad<double> >
+    grad_W (n_q_points, EulerEquations<dim>::n_components, dim);
 
+                                  // We will define the dofs on this cell in
+                                  // these fad variables.
+  std::vector<Sacado::Fad::DFad<double> > independent_local_dof_values(dofs_per_cell);
+  
                                   // Here is the magical point where we declare a subset
                                   // of the fad variables as degrees of freedom.  All 
                                   // calculations that reference these variables (either
                                   // directly or indirectly) will accumulate sensitivies
                                   // with respect to these dofs.
   for (unsigned int in = 0; in < dofs_per_cell; in++) {
-    DOF[in] = current_solution(dofs[in]);
-    DOF[in].diff(in, dofs_per_cell);
+    independent_local_dof_values[in] = current_solution(dof_indices[in]);
+    independent_local_dof_values[in].diff(in, dofs_per_cell);
   }
 
                                   // Here we compute the shape function values and gradients
@@ -1897,23 +1965,23 @@ void ConservationLaw<dim>::assemble_cell_term (const FEValues<dim>             &
   for (unsigned int q = 0; q < n_q_points; q++) {
     for (unsigned int di = 0; di < EulerEquations<dim>::n_components; di++) {
       W[q][di] = 0;
-      Wl[q][di] = 0;
-      Wcn[q][di] = 0;
+      W_old[q][di] = 0;
+      W_theta[q][di] = 0;
       for (unsigned int d = 0; d < dim; d++) {
-        Wgrads[q][di][d] = 0;
+        grad_W[q][di][d] = 0;
       }
     }
     for (unsigned int sf = 0; sf < dofs_per_cell; sf++) {
       int di = fe_v.get_fe().system_to_component_index(sf).first;
       W[q][di] +=
-       DOF[sf]*fe_v.shape_value_component(sf, q, di);
-      Wl[q][di] +=
-       old_solution(dofs[sf])*fe_v.shape_value_component(sf, q, di);
-      Wcn[q][di] +=
-       (parameters.theta*DOF[sf]+(1-parameters.theta)*old_solution(dofs[sf]))*fe_v.shape_value_component(sf, q, di);
+       independent_local_dof_values[sf]*fe_v.shape_value_component(sf, q, di);
+      W_old[q][di] +=
+       old_solution(dof_indices[sf])*fe_v.shape_value_component(sf, q, di);
+      W_theta[q][di] +=
+       (parameters.theta*independent_local_dof_values[sf]+(1-parameters.theta)*old_solution(dof_indices[sf]))*fe_v.shape_value_component(sf, q, di);
 
       for (unsigned int d = 0; d < dim; d++) {
-       Wgrads[q][di][d] += DOF[sf]*
+       grad_W[q][di][d] += independent_local_dof_values[sf]*
                            fe_v.shape_grad_component(sf, q, di)[d];
       } // for d
 
@@ -1931,7 +1999,7 @@ void ConservationLaw<dim>::assemble_cell_term (const FEValues<dim>             &
   FluxMatrix *flux = new FluxMatrix[n_q_points];
   
   for (unsigned int q=0; q < n_q_points; ++q)
-    EulerEquations<dim>::flux_matrix(Wcn[q], flux[q]);
+    EulerEquations<dim>::flux_matrix(W_theta[q], flux[q]);
   
 
                                   // We now have all of the function values/grads/fluxes,
@@ -1968,7 +2036,7 @@ void ConservationLaw<dim>::assemble_cell_term (const FEValues<dim>             &
                                           // The mass term (if the simulation is non-stationary).
          if (parameters.is_stationary == false)
            F_i += 1.0 / parameters.time_step *
-                  (W[point][component_i] - Wl[point][component_i]) *
+                  (W[point][component_i] - W_old[point][component_i]) *
                   fe_v.shape_value_component(i, point, component_i) *
                   fe_v.JxW(point);
          
@@ -1976,7 +2044,7 @@ void ConservationLaw<dim>::assemble_cell_term (const FEValues<dim>             &
          for (unsigned int d = 0; d < dim; d++)
            F_i += 1.0*std::pow(fe_v.get_cell()->diameter(), parameters.diffusion_power) *
                   fe_v.shape_grad_component(i, point, component_i)[d] *
-                  Wgrads[point][component_i][d] *
+                  grad_W[point][component_i][d] *
                   fe_v.JxW(point);
           
                                           // The gravity component only enters into the energy 
@@ -1984,13 +2052,13 @@ void ConservationLaw<dim>::assemble_cell_term (const FEValues<dim>             &
                                           // velocity.
          if (component_i == dim - 1)
            F_i += parameters.gravity *
-                  Wcn[point][EulerEquations<dim>::density_component] *
+                  W_theta[point][EulerEquations<dim>::density_component] *
                   fe_v.shape_value_component(i,point, component_i) *
                   fe_v.JxW(point);
          else if (component_i == EulerEquations<dim>::energy_component)
            F_i += parameters.gravity *
-                  Wcn[point][EulerEquations<dim>::density_component] *
-                  Wcn[point][dim-1] *
+                  W_theta[point][EulerEquations<dim>::density_component] *
+                  W_theta[point][dim-1] *
                   fe_v.shape_value_component(i,point, component_i) *
                   fe_v.JxW(point);
        }
@@ -1999,11 +2067,11 @@ void ConservationLaw<dim>::assemble_cell_term (const FEValues<dim>             &
                                       // of the residual.  We then sum these into the
                                       // Epetra matrix.
       double *values = &(F_i.fastAccessDx(0));
-      Matrix->SumIntoGlobalValues(dofs[i],
+      Matrix->SumIntoGlobalValues(dof_indices[i],
                                  dofs_per_cell,
                                  values,
-                                 reinterpret_cast<int*>(const_cast<unsigned int*>(&dofs[0])));
-      right_hand_side(dofs[i]) -= F_i.val();
+                                 reinterpret_cast<int*>(const_cast<unsigned int*>(&dof_indices[0])));
+      right_hand_side(dof_indices[i]) -= F_i.val();
     }
 
   delete[] flux;
@@ -2023,8 +2091,8 @@ void
 ConservationLaw<dim>::assemble_face_term(const unsigned int           face_no,
                                         const FEFaceValuesBase<dim> &fe_v,
                                         const FEFaceValuesBase<dim> &fe_v_neighbor,
-                                        const std::vector<unsigned int>   &dofs,
-                                        const std::vector<unsigned int>   &dofs_neighbor,
+                                        const std::vector<unsigned int>   &dof_indices,
+                                        const std::vector<unsigned int>   &dof_indices_neighbor,
                                         const bool                   external_face,
                                         const unsigned int           boundary_id,
                                         const double                 face_diameter) 
@@ -2037,7 +2105,7 @@ ConservationLaw<dim>::assemble_face_term(const unsigned int           face_no,
         ExcDimensionMismatch(dofs_per_cell, ndofs_per_cell));
 
                                   // As above, the fad degrees of freedom
-  std::vector<Sacado::Fad::DFad<double> > DOF(dofs_per_cell+ndofs_per_cell);
+  std::vector<Sacado::Fad::DFad<double> > independent_local_dof_values(dofs_per_cell+ndofs_per_cell);
 
                                   // The conservative variables for this cell,
                                   // and for 
@@ -2056,16 +2124,16 @@ ConservationLaw<dim>::assemble_face_term(const unsigned int           face_no,
                                   // there is a neighbor cell, then we want
                                   // to include them.
   int ndofs = (external_face == false ? dofs_per_cell + ndofs_per_cell : dofs_per_cell);
-                                  // Set the local DOFS.
+                                  // Set the local independent_local_dof_valuesS.
   for (unsigned int in = 0; in < dofs_per_cell; in++) {
-    DOF[in] = current_solution(dofs[in]);
-    DOF[in].diff(in, ndofs);
+    independent_local_dof_values[in] = current_solution(dof_indices[in]);
+    independent_local_dof_values[in].diff(in, ndofs);
   }
                                   // If present, set the neighbor dofs.
   if (external_face == false)
     for (unsigned int in = 0; in < ndofs_per_cell; in++) {
-      DOF[in+dofs_per_cell] = current_solution(dofs_neighbor[in]);
-      DOF[in+dofs_per_cell].diff(in+dofs_per_cell, ndofs);
+      independent_local_dof_values[in+dofs_per_cell] = current_solution(dof_indices_neighbor[in]);
+      independent_local_dof_values[in+dofs_per_cell].diff(in+dofs_per_cell, ndofs);
     }
 
                                   // Set the values of the local conservative variables.
@@ -2078,7 +2146,7 @@ ConservationLaw<dim>::assemble_face_term(const unsigned int           face_no,
     for (unsigned int sf = 0; sf < dofs_per_cell; sf++) {
       int di = fe_v.get_fe().system_to_component_index(sf).first;
       Wplus[q][di] +=
-       (parameters.theta*DOF[sf]+(1.0-parameters.theta)*old_solution(dofs[sf]))*fe_v.shape_value_component(sf, q, di);
+       (parameters.theta*independent_local_dof_values[sf]+(1.0-parameters.theta)*old_solution(dof_indices[sf]))*fe_v.shape_value_component(sf, q, di);
     }
 
 
@@ -2089,7 +2157,7 @@ ConservationLaw<dim>::assemble_face_term(const unsigned int           face_no,
       for (unsigned int sf = 0; sf < ndofs_per_cell; sf++) {
        int di = fe_v_neighbor.get_fe().system_to_component_index(sf).first;
        Wminus[q][di] +=
-         (parameters.theta*DOF[sf+dofs_per_cell]+(1.0-parameters.theta)*old_solution(dofs_neighbor[sf]))*
+         (parameters.theta*independent_local_dof_values[sf+dofs_per_cell]+(1.0-parameters.theta)*old_solution(dof_indices_neighbor[sf]))*
          fe_v_neighbor.shape_value_component(sf, q, di);
       }
     } 
@@ -2233,20 +2301,20 @@ ConservationLaw<dim>::assemble_face_term(const unsigned int           face_no,
                                       // Update the matrix.  Depending on whether there
                                       // is/isn't a neighboring cell, we add more/less
                                       // entries.
-      Matrix->SumIntoGlobalValues(dofs[i],
+      Matrix->SumIntoGlobalValues(dof_indices[i],
                                  dofs_per_cell,
                                  &values[0],
-                                 reinterpret_cast<int*>(const_cast<unsigned int*>(&dofs[0])));
+                                 reinterpret_cast<int*>(const_cast<unsigned int*>(&dof_indices[0])));
       
       if (external_face == false)
-       Matrix->SumIntoGlobalValues(dofs[i],
+       Matrix->SumIntoGlobalValues(dof_indices[i],
                                    dofs_per_cell,
                                    &values[dofs_per_cell],
-                                   reinterpret_cast<int*>(const_cast<unsigned int*>(&dofs_neighbor[0])));
+                                   reinterpret_cast<int*>(const_cast<unsigned int*>(&dof_indices_neighbor[0])));
       
 
                                       // And add into the residual
-      right_hand_side(dofs[i]) -= F_i.val();
+      right_hand_side(dof_indices[i]) -= F_i.val();
     }
 
   delete[] normal_fluxes;

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.