* exception, if applied to a
* vector of elements.
*/
- const FEVALUESBASE& fe() const;
+ const FEVALUESBASE& fe_values () const;
/// Access to finite elements
/**
*
* @see DGBlockSplitApplication
*/
- const FEVALUESBASE& fe(const unsigned int i) const;
+ const FEVALUESBASE& fe_values (const unsigned int i) const;
/**
* The vector containing the
template <int dim, class FVB, int spacedim>
inline const FVB&
- IntegrationInfo<dim,FVB,spacedim>::fe() const
+ IntegrationInfo<dim,FVB,spacedim>::fe_values() const
{
AssertDimension(fevalv.size(), 1);
return *fevalv[0];
template <int dim, class FVB, int spacedim>
inline const FVB&
- IntegrationInfo<dim,FVB,spacedim>::fe(unsigned int i) const
+ IntegrationInfo<dim,FVB,spacedim>::fe_values(unsigned int i) const
{
Assert (i<fevalv.size(), ExcIndexRange(i,0,fevalv.size()));
return *fevalv[i];
for (unsigned int b=0;b<this->block_info->local().size();++b)
{
const unsigned int fe_no = this->block_info->base_element(b);
- const FEValuesBase<dim>& fe = this->fe(fe_no);
+ const FEValuesBase<dim>& fe = this->fe_values(fe_no);
const unsigned int n_comp = fe.get_fe().n_components();
const unsigned int block_start = this->block_info->local().block_start(b);
const unsigned int block_size = this->block_info->local().block_size(b);
}
else
{
- const FEValuesBase<dim>& fe = this->fe(0);
+ const FEValuesBase<dim>& fe = this->fe_values(0);
const unsigned int n_comp = fe.get_fe().n_components();
this->global_data->fill(values, gradients, hessians, fe, this->indices,
0, n_comp, 0, this->indices.size());
// structures, thus the access here
// looks more complicated than
// might seem necessary.
- const FEValuesBase<dim>& fe_v = info.fe();
+ const FEValuesBase<dim>& fe_v = info.fe_values();
FullMatrix<double>& local_matrix = info.M1[0].matrix;
const std::vector<double> &JxW = fe_v.get_JxW_values ();
template <int dim>
void DGMethod<dim>::integrate_boundary_term (FaceInfo& info)
{
- const FEFaceValuesBase<dim>& fe_v = info.fe();
+ const FEFaceValuesBase<dim>& fe_v = info.fe_values();
FullMatrix<double>& local_matrix = info.M1[0].matrix;
Vector<double>& local_vector = info.R[0].block(0);
// etc., we use the
// FEFaceValuesBase object of the
// first argument.
- const FEFaceValuesBase<dim>& fe_v = info1.fe();
+ const FEFaceValuesBase<dim>& fe_v = info1.fe_values();
// For additional shape functions,
// we have to ask the neighbors
// FEFaceValuesBase.
- const FEFaceValuesBase<dim>& fe_v_neighbor = info2.fe();
+ const FEFaceValuesBase<dim>& fe_v_neighbor = info2.fe_values();
// Then we get references to the
// four local matrices. The letters
template <int dim>
void MatrixIntegrator<dim>::cell(typename MeshWorker::IntegrationWorker<dim>::CellInfo& info)
{
- const FEValuesBase<dim>& fe = info.fe();
+ const FEValuesBase<dim>& fe = info.fe_values();
FullMatrix<double>& local_matrix = info.M1[0].matrix;
for (unsigned int k=0; k<fe.n_quadrature_points; ++k)
template <int dim>
void MatrixIntegrator<dim>::bdry(typename MeshWorker::IntegrationWorker<dim>::FaceInfo& info)
{
- const FEFaceValuesBase<dim>& fe = info.fe();
+ const FEFaceValuesBase<dim>& fe = info.fe_values();
FullMatrix<double>& local_matrix = info.M1[0].matrix;
const unsigned int deg = fe.get_fe().tensor_degree();
void MatrixIntegrator<dim>::face(typename MeshWorker::IntegrationWorker<dim>::FaceInfo& info1,
typename MeshWorker::IntegrationWorker<dim>::FaceInfo& info2)
{
- const FEFaceValuesBase<dim>& fe1 = info1.fe();
- const FEFaceValuesBase<dim>& fe2 = info2.fe();
+ const FEFaceValuesBase<dim>& fe1 = info1.fe_values();
+ const FEFaceValuesBase<dim>& fe2 = info2.fe_values();
FullMatrix<double>& matrix_v1u1 = info1.M1[0].matrix;
FullMatrix<double>& matrix_v1u2 = info1.M2[0].matrix;
FullMatrix<double>& matrix_v2u1 = info2.M2[0].matrix;
template <int dim>
void RHSIntegrator<dim>::bdry(typename MeshWorker::IntegrationWorker<dim>::FaceInfo& info)
{
- const FEFaceValuesBase<dim>& fe = info.fe();
+ const FEFaceValuesBase<dim>& fe = info.fe_values();
Vector<double>& local_vector = info.R[0].block(0);
std::vector<double> boundary_values(fe.n_quadrature_points);
template <int dim>
void Estimator<dim>::cell(typename MeshWorker::IntegrationWorker<dim>::CellInfo& info)
{
- const FEValuesBase<dim>& fe = info.fe();
+ const FEValuesBase<dim>& fe = info.fe_values();
const std::vector<Tensor<2,dim> >& DDuh = info.hessians[0][0];
for (unsigned k=0;k<fe.n_quadrature_points;++k)
template <int dim>
void Estimator<dim>::bdry(typename MeshWorker::IntegrationWorker<dim>::FaceInfo& info)
{
- const FEFaceValuesBase<dim>& fe = info.fe();
+ const FEFaceValuesBase<dim>& fe = info.fe_values();
std::vector<double> boundary_values(fe.n_quadrature_points);
exact_solution.value_list(fe.get_quadrature_points(), boundary_values);
void Estimator<dim>::face(typename MeshWorker::IntegrationWorker<dim>::FaceInfo& info1,
typename MeshWorker::IntegrationWorker<dim>::FaceInfo& info2)
{
- const FEFaceValuesBase<dim>& fe = info1.fe();
+ const FEFaceValuesBase<dim>& fe = info1.fe_values();
const std::vector<double>& uh1 = info1.values[0][0];
const std::vector<double>& uh2 = info2.values[0][0];
const std::vector<Tensor<1,dim> >& Duh1 = info1.gradients[0][0];