]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Reindent.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Tue, 14 Apr 2009 21:50:52 +0000 (21:50 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Tue, 14 Apr 2009 21:50:52 +0000 (21:50 +0000)
git-svn-id: https://svn.dealii.org/trunk@18612 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-34/step-34.cc

index 07509c97c9e7c50fe7daa759abc246e823330f3b..1fcc39fac7c8214c39105ed1257c283f8d0e6a3e 100644 (file)
@@ -66,122 +66,175 @@ using namespace dealii;
 
                                 // @sect3{Single and double layer operator kernels}
 
-                                // First, let us define a bit of the boundary integral equation machinery.
-
-    // The following two functions are the actual calculations of the
-    // single and double layer potential kernels, that is $G$ and $\nabla
-    // G$. They are well defined only if the vector $R = \mathbf{y}-\mathbf{x}$ is
-    // different from zero.
-    // 
-    // Whenever the integration is performed with the singularity
-    // inside the given cell, then a special quadrature formula is
-    // used that allows one to integrate arbitrary functions against a
-    // singular weight on the reference cell.
-    // There are two options when the integral is singular. One could
-    // take into account the singularity inside the quadrature formula
-    // as a weigthing function, or one could use a quadrature formula
-    // that is taylored to integrate singular objects, but where the
-    // actual weighting function is one. The use of the first method
-    // requires the user to provide "desingularized" single and
-    // double layer potentials which can then be integrated on the
-    // given cell. When the @p factor_out_singularity parameter is set
-    // to true, then the computed kernels do not conatain the singular
-    // factor, which is included in the quadrature formulas as a
-    // weighting function. This works best in two dimension, where the
-    // singular integrals are integrals along a segment of a
-    // logarithmic singularity.
-    //
+                                // First, let us define a bit of the
+                                // boundary integral equation
+                                // machinery.
+
+                                // The following two functions are
+                                // the actual calculations of the
+                                // single and double layer potential
+                                // kernels, that is $G$ and $\nabla
+                                // G$. They are well defined only if
+                                // the vector $R =
+                                // \mathbf{y}-\mathbf{x}$ is
+                                // different from zero.
+                                // 
+                                // Whenever the integration is
+                                // performed with the singularity
+                                // inside the given cell, then a
+                                // special quadrature formula is used
+                                // that allows one to integrate
+                                // arbitrary functions against a
+                                // singular weight on the reference
+                                // cell.  There are two options when
+                                // the integral is singular. One
+                                // could take into account the
+                                // singularity inside the quadrature
+                                // formula as a weigthing function,
+                                // or one could use a quadrature
+                                // formula that is taylored to
+                                // integrate singular objects, but
+                                // where the actual weighting
+                                // function is one. The use of the
+                                // first method requires the user to
+                                // provide "desingularized" single
+                                // and double layer potentials which
+                                // can then be integrated on the
+                                // given cell. When the @p
+                                // factor_out_singularity parameter
+                                // is set to true, then the computed
+                                // kernels do not conatain the
+                                // singular factor, which is included
+                                // in the quadrature formulas as a
+                                // weighting function. This works
+                                // best in two dimension, where the
+                                // singular integrals are integrals
+                                // along a segment of a logarithmic
+                                // singularity.
+                                //
 //TODO: Can you elaborate in formulas?
-    // These integrals are somewhat delicate, because inserting a
-    // factor Jx in the variable of integration does not result only
-    // in a factor J appearing as a constant factor on the entire
-    // integral, but also on an additional integral to be added, that
-    // contains the logarithm of J. For this reason in two dimensions
-    // we opt for the desingularized kernel, and use the QGaussLogR
-    // quadrature formula, that takes care of integrating the correct
-    // weight for us. 
-    //
-    // In the three dimensional case the singular integral is taken
-    // care of using the QGaussOneOverR quadrature formula. We could
-    // use the desingularized kernel here as well, but this would
-    // require us to be careful about the different scaling of $r$ in
-    // the reference cell and in real space. The quadrature formula
-    // uses as weight $1/r$ in local coordinates, while we need to
-    // integrate $1/R$ in real coordinates. A factor of $r/R$ has to be
-    // introduced in the quadrature formula. This can be done
-    // manually, or we simply calculate the standard kernels and then
-    // use a desingularized quadrature formula, i.e., one which is
-    // taylored for singular integrals, but whose weight is 1 instead
-    // of the singularity.
-    //
-    // Notice that the QGaussLog quadrature formula is made to integrate
-    // $f(x)\ln |\mathbf{x}-\mathbf{x}_0|$, but the kernel for two dimensional
-    // problems has the opposite sign. This is taken care of by switching the
-    // sign of the two dimensional desingularized kernel.
-    //
-    // The last argument to both functions is simply ignored in three
-    // dimensions.
+                                // These integrals are somewhat
+                                // delicate, because inserting a
+                                // factor Jx in the variable of
+                                // integration does not result only
+                                // in a factor J appearing as a
+                                // constant factor on the entire
+                                // integral, but also on an
+                                // additional integral to be added,
+                                // that contains the logarithm of
+                                // J. For this reason in two
+                                // dimensions we opt for the
+                                // desingularized kernel, and use the
+                                // QGaussLogR quadrature formula,
+                                // that takes care of integrating the
+                                // correct weight for us.
+                                //
+                                // In the three dimensional case the
+                                // singular integral is taken care of
+                                // using the QGaussOneOverR
+                                // quadrature formula. We could use
+                                // the desingularized kernel here as
+                                // well, but this would require us to
+                                // be careful about the different
+                                // scaling of $r$ in the reference
+                                // cell and in real space. The
+                                // quadrature formula uses as weight
+                                // $1/r$ in local coordinates, while
+                                // we need to integrate $1/R$ in real
+                                // coordinates. A factor of $r/R$ has
+                                // to be introduced in the quadrature
+                                // formula. This can be done
+                                // manually, or we simply calculate
+                                // the standard kernels and then use
+                                // a desingularized quadrature
+                                // formula, i.e., one which is
+                                // taylored for singular integrals,
+                                // but whose weight is 1 instead of
+                                // the singularity.
+                                //
+                                // Notice that the QGaussLog
+                                // quadrature formula is made to
+                                // integrate $f(x)\ln
+                                // |\mathbf{x}-\mathbf{x}_0|$, but
+                                // the kernel for two dimensional
+                                // problems has the opposite
+                                // sign. This is taken care of by
+                                // switching the sign of the two
+                                // dimensional desingularized kernel.
+                                //
+                                // The last argument to both
+                                // functions is simply ignored in
+                                // three dimensions.
 namespace LaplaceKernel
 {
-template <int dim>
-double single_layer(const Point<dim> &R, 
-                   const bool factor_out_2d_singularity = false) {
+  template <int dim>
+  double single_layer(const Point<dim> &R, 
+                     const bool factor_out_2d_singularity = false) {
     switch(dim) {
-    case 2:
-        if (factor_out_2d_singularity == true) 
-            return -1./(2*numbers::PI);
-        else
-            return (-std::log(R.norm()) / (2*numbers::PI) );
-
-    case 3:
-        return (1./( R.norm()*4*numbers::PI ) );
-
-    default:
-        Assert(false, ExcInternalError());
-        return 0.;
+      case 2:
+           if (factor_out_2d_singularity == true) 
+             return -1./(2*numbers::PI);
+           else
+             return (-std::log(R.norm()) / (2*numbers::PI) );
+
+      case 3:
+           return (1./( R.norm()*4*numbers::PI ) );
+
+      default:
+           Assert(false, ExcInternalError());
+           return 0.;
     }
-}
+  }
         
 
 
-template <int dim>
-Point<dim> double_layer(const Point<dim> &R,
-                       const bool factor_out_2d_singularity = false) {
-  switch(dim) {
-    case 2:
-         if (factor_out_2d_singularity)
-           return Point<dim>();
-         else
-           return R / (-2*numbers::PI * R.square());
-    case 3:
-         return R / ( -4*numbers::PI * R.square()*R.norm() );
+  template <int dim>
+  Point<dim> double_layer(const Point<dim> &R,
+                         const bool factor_out_2d_singularity = false) {
+    switch(dim) {
+      case 2:
+           if (factor_out_2d_singularity)
+             return Point<dim>();
+           else
+             return R / (-2*numbers::PI * R.square());
+      case 3:
+           return R / ( -4*numbers::PI * R.square()*R.norm() );
 
       default:
-        Assert(false, ExcInternalError());
-       return Point<dim>();
+           Assert(false, ExcInternalError());
+           return Point<dim>();
     }
-}
+  }
 }
 
 
                                 // @sect3{The BEMProblem class}
 
-    // The structure of a boundary element method code is very similar to the
-    // structure of a finite element code, and so the member functions of this
-    // class are like those of most of the other tutorial programs. In
-    // particular, by now you should be familiar with reading parameters from
-    // an external file, and with the splitting of the different tasks into
-    // different modules. The same applies to boundary element methods, and we
-    // won't comment too much on them, except on the differences.
+                                // The structure of a boundary
+                                // element method code is very
+                                // similar to the structure of a
+                                // finite element code, and so the
+                                // member functions of this class are
+                                // like those of most of the other
+                                // tutorial programs. In particular,
+                                // by now you should be familiar with
+                                // reading parameters from an
+                                // external file, and with the
+                                // splitting of the different tasks
+                                // into different modules. The same
+                                // applies to boundary element
+                                // methods, and we won't comment too
+                                // much on them, except on the
+                                // differences.
 template <int dim> 
 class BEMProblem 
 {
-public:
+  public:
     BEMProblem();
     
     void run();
 
-private:
+  private:
     
     void read_parameters (const std::string &filename);
     
@@ -189,154 +242,274 @@ private:
 
     void refine_and_resize();
     
-    // The only really different function that we find here is the
-    // assembly routine. We wrote this function in the most possible
-    // general way, in order to allow for easy generalization to
-    // higher order methods and to different fundamental solutions
-    // (e.g., Stokes or Maxwell).
-    //
-    // The most noticeable difference is the fact that the final
-    // matrix is full, and that we have a nested loop inside the usual
-    // loop on cells that visits all support points of the degrees of
-    // freedom.  Moreover, when the support point lies inside the cell
-    // which we are visiting, then the integral we perform becomes
-    // singular.
-    //
-    // The practical consequence is that we have two sets of
-    // quadrature formulas, finite element values and temporary
-    // storage, one for standard integration and one for the singular
-    // integration, which are used where necessary.
+                                    // The only really different
+                                    // function that we find here is
+                                    // the assembly routine. We wrote
+                                    // this function in the most
+                                    // possible general way, in order
+                                    // to allow for easy
+                                    // generalization to higher order
+                                    // methods and to different
+                                    // fundamental solutions (e.g.,
+                                    // Stokes or Maxwell).
+                                    //
+                                    // The most noticeable difference
+                                    // is the fact that the final
+                                    // matrix is full, and that we
+                                    // have a nested loop inside the
+                                    // usual loop on cells that
+                                    // visits all support points of
+                                    // the degrees of freedom.
+                                    // Moreover, when the support
+                                    // point lies inside the cell
+                                    // which we are visiting, then
+                                    // the integral we perform
+                                    // becomes singular.
+                                    //
+                                    // The practical consequence is
+                                    // that we have two sets of
+                                    // quadrature formulas, finite
+                                    // element values and temporary
+                                    // storage, one for standard
+                                    // integration and one for the
+                                    // singular integration, which
+                                    // are used where necessary.
     void assemble_system();
 
-    // Notwithstanding the fact that the matrix is full, we use a SparseMatrix
-    // object and the SparseDirectUMFPACK solver, since in our experience it
-    // works better than using, for example, the LapackFullMatrix class. Of
-    // course, using a SparseMatrix object to store the matrix is wasteful,
-    // but at least for the moment that is all the SparseDirectUMFPACK class
-    // can deal with.
-    //
-    // An alternative approach would be the
-    // use of the GMRES method; however the construction of an efficient
-    // preconditioner for boundary element methods is not a trivial
-    // issue, and we won't treat this problem here.
-    //
-    // Moreover, we should notice that the solution we will obtain will only
-    // be unique up to an additive constant. This is taken care of in the
-    // <code>solve_system()</code> method, which filters out the mean value of
-    // the solution at the end of the computation.
+                                    // Notwithstanding the fact that
+                                    // the matrix is full, we use a
+                                    // SparseMatrix object and the
+                                    // SparseDirectUMFPACK solver,
+                                    // since in our experience it
+                                    // works better than using, for
+                                    // example, the LapackFullMatrix
+                                    // class. Of course, using a
+                                    // SparseMatrix object to store
+                                    // the matrix is wasteful, but at
+                                    // least for the moment that is
+                                    // all the SparseDirectUMFPACK
+                                    // class can deal with.
+                                    //
+                                    // An alternative approach would
+                                    // be the use of the GMRES
+                                    // method; however the
+                                    // construction of an efficient
+                                    // preconditioner for boundary
+                                    // element methods is not a
+                                    // trivial issue, and we won't
+                                    // treat this problem here.
+                                    //
+                                    // Moreover, we should notice
+                                    // that the solution we will
+                                    // obtain will only be unique up
+                                    // to an additive constant. This
+                                    // is taken care of in the
+                                    // <code>solve_system()</code>
+                                    // method, which filters out the
+                                    // mean value of the solution at
+                                    // the end of the computation.
     void solve_system();
 
-    // Once we obtained the solution, we compute the $L^2$ error of
-    // the computed potential as well as the $L^\infty$ error of the
-    // approximation of the solid angle. The mesh we are using is an
-    // approximation of a smooth curve, therefore the computed
-    // diagonal matrix of fraction of angles or solid angles
-    // $\alpha(\mathbf{x})$ should be constantly equal to $\frac
-    // 12$. In this routine we output the error on the potential and
-    // the error in the approximation of the computed angle. Notice
-    // that the latter error is actually not the error in the
-    // computation of the angle, but a measure of how well we are
-    // approximating the sphere and the circle.
-    //
-    // Experimenting a little with the computation of the angles gives very
-    // accurate results for simpler geometries. To verify this you can comment
-    // out, in the read_domain() method, the tria.set_boundary(1, boundary)
-    // line, and check the alpha that is generated by the program. By removing
-    // this call, whenever the mesh is refined new nodes will be placed along
-    // the straight lines that made up the coarse mesh, rather than be pulled
-    // onto the surface that we really want to approximate. In the three
-    // dimensional case, the coarse grid of the sphere is obtained starting
-    // from a cube, and the obtained values of alphas are exactly $\frac 12$
-    // on the nodes of the faces, $\frac 14$ on the nodes of the edges and
-    // $\frac 18$ on the 8 nodes of the vertices.
+                                    // Once we obtained the solution,
+                                    // we compute the $L^2$ error of
+                                    // the computed potential as well
+                                    // as the $L^\infty$ error of the
+                                    // approximation of the solid
+                                    // angle. The mesh we are using
+                                    // is an approximation of a
+                                    // smooth curve, therefore the
+                                    // computed diagonal matrix of
+                                    // fraction of angles or solid
+                                    // angles $\alpha(\mathbf{x})$
+                                    // should be constantly equal to
+                                    // $\frac 12$. In this routine we
+                                    // output the error on the
+                                    // potential and the error in the
+                                    // approximation of the computed
+                                    // angle. Notice that the latter
+                                    // error is actually not the
+                                    // error in the computation of
+                                    // the angle, but a measure of
+                                    // how well we are approximating
+                                    // the sphere and the circle.
+                                    //
+                                    // Experimenting a little with
+                                    // the computation of the angles
+                                    // gives very accurate results
+                                    // for simpler geometries. To
+                                    // verify this you can comment
+                                    // out, in the read_domain()
+                                    // method, the
+                                    // tria.set_boundary(1, boundary)
+                                    // line, and check the alpha that
+                                    // is generated by the
+                                    // program. By removing this
+                                    // call, whenever the mesh is
+                                    // refined new nodes will be
+                                    // placed along the straight
+                                    // lines that made up the coarse
+                                    // mesh, rather than be pulled
+                                    // onto the surface that we
+                                    // really want to approximate. In
+                                    // the three dimensional case,
+                                    // the coarse grid of the sphere
+                                    // is obtained starting from a
+                                    // cube, and the obtained values
+                                    // of alphas are exactly $\frac
+                                    // 12$ on the nodes of the faces,
+                                    // $\frac 14$ on the nodes of the
+                                    // edges and $\frac 18$ on the 8
+                                    // nodes of the vertices.
     void compute_errors(const unsigned int cycle);
     
-    // Once we obtained a solution on the codimension one domain, we
-    // want to interpolate it to the rest of the
-    // space. This is done by performing again the convolution of the
-    // solution with the kernel in the compute_exterior_solution() function.
-    //
-    // We would like to plot the velocity variable which is the
-    // gradient of the potential solution. The potential solution is
-    // only known on the boundary, but we use the convolution with the
-    // fundamental solution to interpolate it on a standard dim
-    // dimensional continuous finite element space. The plot of the
-    // gradient of the extrapolated solution will give us the velocity
-    // we want.
-    //
-    // In addition to the solution on the exterior domain, we also output the
-    // solution on the domain's boundary in the output_results() function, of
-    // course.
+                                    // Once we obtained a solution on
+                                    // the codimension one domain, we
+                                    // want to interpolate it to the
+                                    // rest of the space. This is
+                                    // done by performing again the
+                                    // convolution of the solution
+                                    // with the kernel in the
+                                    // compute_exterior_solution()
+                                    // function.
+                                    //
+                                    // We would like to plot the
+                                    // velocity variable which is the
+                                    // gradient of the potential
+                                    // solution. The potential
+                                    // solution is only known on the
+                                    // boundary, but we use the
+                                    // convolution with the
+                                    // fundamental solution to
+                                    // interpolate it on a standard
+                                    // dim dimensional continuous
+                                    // finite element space. The plot
+                                    // of the gradient of the
+                                    // extrapolated solution will
+                                    // give us the velocity we want.
+                                    //
+                                    // In addition to the solution on
+                                    // the exterior domain, we also
+                                    // output the solution on the
+                                    // domain's boundary in the
+                                    // output_results() function, of
+                                    // course.
     void compute_exterior_solution();
     
     void output_results(const unsigned int cycle);
     
-    // The usual deal.II classes can be used for boundary element
-    // methods by specifying the "codimension" of the problem. This is
-    // done by setting the optional second template arguments to
-    // Triangulation, FiniteElement and DoFHandler to the dimension of
-    // the embedding space. In our case we generate either 1 or 2
-    // dimensional meshes embedded in 2 or 3 dimensional spaces.
-    //
-    // The optional argument by default is equal to the first
-    // argument, and produces the usual finite element classes that we
-    // saw in all previous examples.
+                                    // The usual deal.II classes can
+                                    // be used for boundary element
+                                    // methods by specifying the
+                                    // "codimension" of the
+                                    // problem. This is done by
+                                    // setting the optional second
+                                    // template arguments to
+                                    // Triangulation, FiniteElement
+                                    // and DoFHandler to the
+                                    // dimension of the embedding
+                                    // space. In our case we generate
+                                    // either 1 or 2 dimensional
+                                    // meshes embedded in 2 or 3
+                                    // dimensional spaces.
+                                    //
+                                    // The optional argument by
+                                    // default is equal to the first
+                                    // argument, and produces the
+                                    // usual finite element classes
+                                    // that we saw in all previous
+                                    // examples.
 
     Triangulation<dim-1, dim>   tria;
     FE_Q<dim-1,dim>             fe;
     DoFHandler<dim-1,dim>       dh;
 
-    // In BEM methods, the matrix that is generated is
-    // dense. Depending on the size of the problem, the final system
-    // might be solved by direct LU decomposition, or by iterative
-    // methods. In this example we use the SparseDirectUMFPACK solver,
-    // applied to a "fake" sparse matrix (a sparse matrix will all
-    // entries different from zero). We found that this method is
-    // faster than using a LapackFullMatrix object.
+                                    // In BEM methods, the matrix
+                                    // that is generated is
+                                    // dense. Depending on the size
+                                    // of the problem, the final
+                                    // system might be solved by
+                                    // direct LU decomposition, or by
+                                    // iterative methods. In this
+                                    // example we use the
+                                    // SparseDirectUMFPACK solver,
+                                    // applied to a "fake" sparse
+                                    // matrix (a sparse matrix will
+                                    // all entries different from
+                                    // zero). We found that this
+                                    // method is faster than using a
+                                    // LapackFullMatrix object.
 
     SparsityPattern             sparsity;
     SparseMatrix<double>        system_matrix;    
     Vector<double>              system_rhs;
 
-                                    // The next two variables will denote the
-                                    // solution $\phi$ as well as a vector
-                                    // that will hold the values of
-                                    // $\alpha(\mathbf x)$ (the fraction of
-                                    // space visible from a point $\mathbf
-                                    // x$) at the support points of our shape
+                                    // The next two variables will
+                                    // denote the solution $\phi$ as
+                                    // well as a vector that will
+                                    // hold the values of
+                                    // $\alpha(\mathbf x)$ (the
+                                    // fraction of space visible from
+                                    // a point $\mathbf x$) at the
+                                    // support points of our shape
                                     // functions.
     Vector<double>              phi;
     Vector<double>              alpha;
     
-    // The convergence table is used to output errors in the exact
-    // solution and in the computed alphas. 
+                                    // The convergence table is used
+                                    // to output errors in the exact
+                                    // solution and in the computed
+                                    // alphas.
     ConvergenceTable   convergence_table;
     
-    // The following variables are the ones that we fill through a
-    // parameter file.  The new objects that we use in this example
-    // are the Functions::ParsedFunction object and the QuadratureSelector
-    // object.
-    //
-    // The Functions::ParsedFunction class allows us to easily and quickly
-    // define new function objects via parameter files, with custom
-    // definitions which can be very complex (see the documentation of that
-    // class for all the available options).
-    //
-    // We will allocate the quadrature object using the QuadratureSelector
-    // class that allows us to generate quadrature formulas based on an
-    // identifying string and on the possible degree of the formula itself. We
-    // used this to allow custom selection of the quadrature formulas for the
-    // standard integration, and to define the order of the singular
-    // quadrature rule.
-    //
-    // Notice that the pointer given below for the quadrature rule is
-    // only used for non singular integrals. Whenever the integral is
-    // singular, then only the degree of the quadrature pointer is
-    // used, and the integration is a special one (see the
-    // assemble_matrix() function below for further details).
-    //
-    // We also define a couple of parameters which are used in case we
-    // wanted to extend the solution to the entire domain. 
+                                    // The following variables are
+                                    // the ones that we fill through
+                                    // a parameter file.  The new
+                                    // objects that we use in this
+                                    // example are the
+                                    // Functions::ParsedFunction
+                                    // object and the
+                                    // QuadratureSelector object.
+                                    //
+                                    // The Functions::ParsedFunction
+                                    // class allows us to easily and
+                                    // quickly define new function
+                                    // objects via parameter files,
+                                    // with custom definitions which
+                                    // can be very complex (see the
+                                    // documentation of that class
+                                    // for all the available
+                                    // options).
+                                    //
+                                    // We will allocate the
+                                    // quadrature object using the
+                                    // QuadratureSelector class that
+                                    // allows us to generate
+                                    // quadrature formulas based on
+                                    // an identifying string and on
+                                    // the possible degree of the
+                                    // formula itself. We used this
+                                    // to allow custom selection of
+                                    // the quadrature formulas for
+                                    // the standard integration, and
+                                    // to define the order of the
+                                    // singular quadrature rule.
+                                    //
+                                    // Notice that the pointer given
+                                    // below for the quadrature rule
+                                    // is only used for non singular
+                                    // integrals. Whenever the
+                                    // integral is singular, then
+                                    // only the degree of the
+                                    // quadrature pointer is used,
+                                    // and the integration is a
+                                    // special one (see the
+                                    // assemble_matrix() function
+                                    // below for further details).
+                                    //
+                                    // We also define a couple of
+                                    // parameters which are used in
+                                    // case we wanted to extend the
+                                    // solution to the entire domain.
     Functions::ParsedFunction<dim> wind;
     Functions::ParsedFunction<dim> exact_solution;
 
@@ -353,534 +526,696 @@ private:
 
                                 // @sect4{BEMProblem::BEMProblem and BEMProblem::read_parameters}
 
-// The constructor initializes the variuous object in much the same way as
-// done in the finite element programs such as step-4 or step-6. The only new
-// ingredient here is the ParsedFunction object, which needs, at construction
-// time, the specification of the number of components.
-//
-// For the exact solution the number of vector components is one, and no
-// action is required since one is the default value for a ParsedFunction
-// object. The wind, however, requires dim components to be specified. Notice
-// that when declaring entries in a parameter file for the expression of the
-// Functions::ParsedFunction, we need to specify the number of components
-// explicitly, since the function
-// Functions::ParsedFunction::declare_parameters is static, and has no
-// knowledge of the number of components.
+                                // The constructor initializes the
+                                // variuous object in much the same
+                                // way as done in the finite element
+                                // programs such as step-4 or
+                                // step-6. The only new ingredient
+                                // here is the ParsedFunction object,
+                                // which needs, at construction time,
+                                // the specification of the number of
+                                // components.
+                                //
+                                // For the exact solution the number
+                                // of vector components is one, and
+                                // no action is required since one is
+                                // the default value for a
+                                // ParsedFunction object. The wind,
+                                // however, requires dim components
+                                // to be specified. Notice that when
+                                // declaring entries in a parameter
+                                // file for the expression of the
+                                // Functions::ParsedFunction, we need
+                                // to specify the number of
+                                // components explicitly, since the
+                                // function
+                                // Functions::ParsedFunction::declare_parameters
+                                // is static, and has no knowledge of
+                                // the number of components.
 template <int dim>
 BEMProblem<dim>::BEMProblem() :
-    fe(1),
-    dh(tria),
-    wind(dim)
+               fe(1),
+               dh(tria),
+               wind(dim)
 {}
 
 template <int dim> 
 void BEMProblem<dim>::read_parameters (const std::string &filename) {
-    deallog << std::endl << "Parsing parameter file " << filename << std::endl
-            << "for a " << dim << " dimensional simulation. " << std::endl;
+  deallog << std::endl << "Parsing parameter file " << filename << std::endl
+         << "for a " << dim << " dimensional simulation. " << std::endl;
     
-    ParameterHandler prm;
+  ParameterHandler prm;
     
-    prm.declare_entry("Number of cycles", "4",
-                     Patterns::Integer());
-    prm.declare_entry("External refinement", "5",
-                     Patterns::Integer());
-    prm.declare_entry("Extend solution on the -2,2 box", "true",
-                     Patterns::Bool());
-    prm.declare_entry("Run 2d simulation", "true",
-                     Patterns::Bool());
-    prm.declare_entry("Run 3d simulation", "true",
-                     Patterns::Bool());
+  prm.declare_entry("Number of cycles", "4",
+                   Patterns::Integer());
+  prm.declare_entry("External refinement", "5",
+                   Patterns::Integer());
+  prm.declare_entry("Extend solution on the -2,2 box", "true",
+                   Patterns::Bool());
+  prm.declare_entry("Run 2d simulation", "true",
+                   Patterns::Bool());
+  prm.declare_entry("Run 3d simulation", "true",
+                   Patterns::Bool());
     
-    prm.enter_subsection("Quadrature rules");
-    {
-      prm.declare_entry("Quadrature type", "gauss", 
-                       Patterns::Selection(QuadratureSelector<(dim-1)>::get_quadrature_names()));
-      prm.declare_entry("Quadrature order", "4", Patterns::Integer());
-      prm.declare_entry("Singular quadrature order", "5", Patterns::Integer());
-    }
-    prm.leave_subsection();
+  prm.enter_subsection("Quadrature rules");
+  {
+    prm.declare_entry("Quadrature type", "gauss", 
+                     Patterns::Selection(QuadratureSelector<(dim-1)>::get_quadrature_names()));
+    prm.declare_entry("Quadrature order", "4", Patterns::Integer());
+    prm.declare_entry("Singular quadrature order", "5", Patterns::Integer());
+  }
+  prm.leave_subsection();
     
-    // For both two and three dimensions, we set the default input data to be
-    // such that the solution is $x+y$ or $x+y+z$. The actually computed
-    // solution will differ from this by a constant (remember that for the
-    // velocity $\mathbf{\tilde v}$ we only need the gradient of the potential
-    // $\phi$, so an additive constant is of no concern to us) but we will
-    // remove it after solving for $\phi$ to make the solution function have a
-    // mean value of zero.
-    //
-    // The use of the Functions::ParsedFunction object is pretty straight
-    // forward. The Functions::ParsedFunction::declare_parameters function
-    // takes an additional integer argument that specifies the number of
-    // components of the given function. Its default value is one. When the
-    // corresponding Functions::ParsedFunction::parse_parameters method is
-    // called, the calling object has to have the same number of components
-    // defined here, otherwise an exception is thrown.
-    //
-    // When declaring entries, we declare both 2 and three dimensional
-    // functions. However only the dim-dimensional one is ultimately
-    // parsed. This allows us to have only one parameter file for both 2 and 3
-    // dimensional problems.
-    prm.enter_subsection("Wind function 2d");
-    {
-      Functions::ParsedFunction<2>::declare_parameters(prm, 2);
-      prm.set("Function expression", "1; 1");
-    }
-    prm.leave_subsection();
+                                  // For both two and three
+                                  // dimensions, we set the default
+                                  // input data to be such that the
+                                  // solution is $x+y$ or
+                                  // $x+y+z$. The actually computed
+                                  // solution will differ from this
+                                  // by a constant (remember that for
+                                  // the velocity $\mathbf{\tilde v}$
+                                  // we only need the gradient of the
+                                  // potential $\phi$, so an additive
+                                  // constant is of no concern to us)
+                                  // but we will remove it after
+                                  // solving for $\phi$ to make the
+                                  // solution function have a mean
+                                  // value of zero.
+                                  //
+                                  // The use of the
+                                  // Functions::ParsedFunction object
+                                  // is pretty straight forward. The
+                                  // Functions::ParsedFunction::declare_parameters
+                                  // function takes an additional
+                                  // integer argument that specifies
+                                  // the number of components of the
+                                  // given function. Its default
+                                  // value is one. When the
+                                  // corresponding
+                                  // Functions::ParsedFunction::parse_parameters
+                                  // method is called, the calling
+                                  // object has to have the same
+                                  // number of components defined
+                                  // here, otherwise an exception is
+                                  // thrown.
+                                  //
+                                  // When declaring entries, we
+                                  // declare both 2 and three
+                                  // dimensional functions. However
+                                  // only the dim-dimensional one is
+                                  // ultimately parsed. This allows
+                                  // us to have only one parameter
+                                  // file for both 2 and 3
+                                  // dimensional problems.
+  prm.enter_subsection("Wind function 2d");
+  {
+    Functions::ParsedFunction<2>::declare_parameters(prm, 2);
+    prm.set("Function expression", "1; 1");
+  }
+  prm.leave_subsection();
 
-    prm.enter_subsection("Wind function 3d");
-    {
-      Functions::ParsedFunction<3>::declare_parameters(prm, 3);
-      prm.set("Function expression", "1; 1; 1");
-    }
-    prm.leave_subsection();
+  prm.enter_subsection("Wind function 3d");
+  {
+    Functions::ParsedFunction<3>::declare_parameters(prm, 3);
+    prm.set("Function expression", "1; 1; 1");
+  }
+  prm.leave_subsection();
 
-    prm.enter_subsection("Exact solution 2d");
-    {
-      Functions::ParsedFunction<2>::declare_parameters(prm);
-      prm.set("Function expression", "x+y");
-    }
-    prm.leave_subsection();
+  prm.enter_subsection("Exact solution 2d");
+  {
+    Functions::ParsedFunction<2>::declare_parameters(prm);
+    prm.set("Function expression", "x+y");
+  }
+  prm.leave_subsection();
 
-    prm.enter_subsection("Exact solution 3d");
-    {
-      Functions::ParsedFunction<3>::declare_parameters(prm);
-      prm.set("Function expression", "x+y+z");
-    }
-    prm.leave_subsection();
-
-                                    // After declaring all these parameters
-                                    // to the ParameterHandler object, let's
-                                    // read an input file that will give the
-                                    // parameters their values. We then
-                                    // proceed to extract these values from
-                                    // the ParameterHandler object:
-    prm.read_input(filename);
-
-    n_cycles = prm.get_integer("Number of cycles");                   
-    external_refinement = prm.get_integer("External refinement");
-    extend_solution = prm.get_bool("Extend solution on the -2,2 box");
+  prm.enter_subsection("Exact solution 3d");
+  {
+    Functions::ParsedFunction<3>::declare_parameters(prm);
+    prm.set("Function expression", "x+y+z");
+  }
+  prm.leave_subsection();
+
+                                  // After declaring all these
+                                  // parameters to the
+                                  // ParameterHandler object, let's
+                                  // read an input file that will
+                                  // give the parameters their
+                                  // values. We then proceed to
+                                  // extract these values from the
+                                  // ParameterHandler object:
+  prm.read_input(filename);
+
+  n_cycles = prm.get_integer("Number of cycles");                   
+  external_refinement = prm.get_integer("External refinement");
+  extend_solution = prm.get_bool("Extend solution on the -2,2 box");
     
-    prm.enter_subsection("Quadrature rules");
-    {
-      quadrature =
-       std_cxx0x::shared_ptr<Quadrature<dim-1> >
-       (new QuadratureSelector<dim-1> (prm.get("Quadrature type"),
-                                       prm.get_integer("Quadrature order")));
-      singular_quadrature_order = prm.get_integer("Singular quadrature order");
-    }
-    prm.leave_subsection();
+  prm.enter_subsection("Quadrature rules");
+  {
+    quadrature =
+      std_cxx0x::shared_ptr<Quadrature<dim-1> >
+      (new QuadratureSelector<dim-1> (prm.get("Quadrature type"),
+                                     prm.get_integer("Quadrature order")));
+    singular_quadrature_order = prm.get_integer("Singular quadrature order");
+  }
+  prm.leave_subsection();
     
-    prm.enter_subsection(std::string("Wind function ")+
-                         Utilities::int_to_string(dim)+std::string("d"));
-    {
-      wind.parse_parameters(prm);
-    }
-    prm.leave_subsection();
-
-    prm.enter_subsection(std::string("Exact solution ")+
-                         Utilities::int_to_string(dim)+std::string("d"));
-    {
-      exact_solution.parse_parameters(prm);
-    }
-    prm.leave_subsection();
+  prm.enter_subsection(std::string("Wind function ")+
+                      Utilities::int_to_string(dim)+std::string("d"));
+  {
+    wind.parse_parameters(prm);
+  }
+  prm.leave_subsection();
 
-    // Finally, here's another example of how to use parameter files in
-    // dimension independent programming.  If we wanted to switch off one of
-    // the two simulations, we could do this by setting the corresponding "Run
-    // 2d simulation" or "Run 3d simulation" flag to false:
-    run_in_this_dimension = prm.get_bool("Run " + 
-                                         Utilities::int_to_string(dim) +
-                                         "d simulation");
+  prm.enter_subsection(std::string("Exact solution ")+
+                      Utilities::int_to_string(dim)+std::string("d"));
+  {
+    exact_solution.parse_parameters(prm);
+  }
+  prm.leave_subsection();
+
+                                  // Finally, here's another example
+                                  // of how to use parameter files in
+                                  // dimension independent
+                                  // programming.  If we wanted to
+                                  // switch off one of the two
+                                  // simulations, we could do this by
+                                  // setting the corresponding "Run
+                                  // 2d simulation" or "Run 3d
+                                  // simulation" flag to false:
+  run_in_this_dimension = prm.get_bool("Run " + 
+                                      Utilities::int_to_string(dim) +
+                                      "d simulation");
 
 }
 
 
                                 // @sect4{BEMProblem::read_domain}
     
-    // A boundary element method triangulation is basically the same
-    // as a (dim-1) dimensional triangulation, with the difference that the
-    // vertices belong to a (dim) dimensional space.
-    //
-    // Some of the mesh formats supported in deal.II use by default three
-    // dimensional points to describe meshes. These are the formats which are
-    // compatible with the boundary element method capabilities of deal.II. In
-    // particular we can use either UCD or GMSH formats. In both cases, we
-    // have to be particularly careful with the orientation of the mesh,
-    // because, unlike in the standard finite element case, no reordering or
-    // compatibility check is performed here.  All meshes are considered as
-    // oriented, because they are embedded in a higher dimensional space. (See
-    // the documentation of the GridIn and of the Triangulation for further
-    // details on orientation of cells in a triangulation.) In our case, the
-    // normals to the mesh are external to both the circle in 2d or the sphere
-    // in 3d.
-    //
-    // The other detail that is required for appropriate refinement of the
-    // boundary element mesh, is an accurate description of the manifold that
-    // the mesh is approximating. We already saw this several times for the
-    // boundary of standard finite element meshes (for example in step-5 and
-    // step-6), and here the principle and usage is the same, except that the
-    // HyperBallBoundary class takes an additional template parameter that
-    // specifies the embedding space dimension. The function object still has
-    // to be static to live at least as long as the triangulation object to
-    // which it is attached.
+                                // A boundary element method
+                                // triangulation is basically the
+                                // same as a (dim-1) dimensional
+                                // triangulation, with the difference
+                                // that the vertices belong to a
+                                // (dim) dimensional space.
+                                //
+                                // Some of the mesh formats supported
+                                // in deal.II use by default three
+                                // dimensional points to describe
+                                // meshes. These are the formats
+                                // which are compatible with the
+                                // boundary element method
+                                // capabilities of deal.II. In
+                                // particular we can use either UCD
+                                // or GMSH formats. In both cases, we
+                                // have to be particularly careful
+                                // with the orientation of the mesh,
+                                // because, unlike in the standard
+                                // finite element case, no reordering
+                                // or compatibility check is
+                                // performed here.  All meshes are
+                                // considered as oriented, because
+                                // they are embedded in a higher
+                                // dimensional space. (See the
+                                // documentation of the GridIn and of
+                                // the Triangulation for further
+                                // details on orientation of cells in
+                                // a triangulation.) In our case, the
+                                // normals to the mesh are external
+                                // to both the circle in 2d or the
+                                // sphere in 3d.
+                                //
+                                // The other detail that is required
+                                // for appropriate refinement of the
+                                // boundary element mesh, is an
+                                // accurate description of the
+                                // manifold that the mesh is
+                                // approximating. We already saw this
+                                // several times for the boundary of
+                                // standard finite element meshes
+                                // (for example in step-5 and
+                                // step-6), and here the principle
+                                // and usage is the same, except that
+                                // the HyperBallBoundary class takes
+                                // an additional template parameter
+                                // that specifies the embedding space
+                                // dimension. The function object
+                                // still has to be static to live at
+                                // least as long as the triangulation
+                                // object to which it is attached.
         
 template <int dim>
 void BEMProblem<dim>::read_domain() {
-    static HyperBallBoundary<dim-1, dim> boundary(Point<dim>(),1.);    
-
-    std::ifstream in;
-    switch (dim)
-      {
-       case 2:
-             in.open ("coarse_circle.inp");
-             break;
+  static HyperBallBoundary<dim-1, dim> boundary(Point<dim>(),1.);    
+
+  std::ifstream in;
+  switch (dim)
+    {
+      case 2:
+           in.open ("coarse_circle.inp");
+           break;
              
-       case 3:
-             in.open ("coarse_sphere.inp");
-             break;
+      case 3:
+           in.open ("coarse_sphere.inp");
+           break;
 
-       default:
-             Assert (false, ExcNotImplemented());
-      }
+      default:
+           Assert (false, ExcNotImplemented());
+    }
 
-    GridIn<dim-1, dim> gi;
-    gi.attach_triangulation (tria);
-    gi.read_ucd (in);
-    tria.set_boundary(1, boundary);
+  GridIn<dim-1, dim> gi;
+  gi.attach_triangulation (tria);
+  gi.read_ucd (in);
+  tria.set_boundary(1, boundary);
 }
 
 
                                 // @sect4{BEMProblem::refine_and_resize}
 
-                                // This function globally refines the mesh,
-                                // distributes degrees of freedom, and
-                                // resizes matrices and vectors.
+                                // This function globally refines the
+                                // mesh, distributes degrees of
+                                // freedom, and resizes matrices and
+                                // vectors.
                                 //
-    // Note that the matrix is a full matrix and that consequently we have to
-    // build a sparsity pattern that contains every single
-    // entry. Notwithstanding this fact, the SparseMatrix class coupled with
-    // the SparseDirectUMFPACK solver are still faster than Lapack solvers for
-    // full matrices. The drawback is that we need to assemble a full
-    // SparsityPattern, which is not the most efficient way to store a full
-    // matrix.
+                                // Note that the matrix is a full
+                                // matrix and that consequently we
+                                // have to build a sparsity pattern
+                                // that contains every single
+                                // entry. Notwithstanding this fact,
+                                // the SparseMatrix class coupled
+                                // with the SparseDirectUMFPACK
+                                // solver are still faster than
+                                // Lapack solvers for full
+                                // matrices. The drawback is that we
+                                // need to assemble a full
+                                // SparsityPattern, which is not the
+                                // most efficient way to store a full
+                                // matrix.
 
 template <int dim>
 void BEMProblem<dim>::refine_and_resize() {
-    tria.refine_global(1);
+  tria.refine_global(1);
     
-    dh.distribute_dofs(fe);
+  dh.distribute_dofs(fe);
     
-    const unsigned int n_dofs =  dh.n_dofs();
+  const unsigned int n_dofs =  dh.n_dofs();
     
-    system_matrix.clear();
-    sparsity.reinit(n_dofs, n_dofs, n_dofs);
-    for(unsigned int i=0; i<n_dofs;++i)
-        for(unsigned int j=0; j<n_dofs; ++j)
-            sparsity.add(i,j);
-    sparsity.compress();
-    system_matrix.reinit(sparsity);
+  system_matrix.clear();
+  sparsity.reinit(n_dofs, n_dofs, n_dofs);
+  for(unsigned int i=0; i<n_dofs;++i)
+    for(unsigned int j=0; j<n_dofs; ++j)
+      sparsity.add(i,j);
+  sparsity.compress();
+  system_matrix.reinit(sparsity);
     
-    system_rhs.reinit(n_dofs);
-    phi.reinit(n_dofs);
-    alpha.reinit(n_dofs);
+  system_rhs.reinit(n_dofs);
+  phi.reinit(n_dofs);
+  alpha.reinit(n_dofs);
 }    
 
 
                                 // @sect4{BEMProblem::assemble_system}
 
-                                // The following is the main function of this
-                                // program, assembling the matrix that
-                                // corresponds to the boundary integral
-                                // equation.
+                                // The following is the main function
+                                // of this program, assembling the
+                                // matrix that corresponds to the
+                                // boundary integral equation.
                                 //
-    // At the beginning, we create the singular quadratures for the three
-    // dimensional problem (note that a 3d boundary integral problem requires
-    // a 2d quadrature formula!), since in this case they only depend on the
-    // reference element. This quadrature is a standard Gauss quadrature
-    // formula reparametrized in such a way that allows one to integrate
-    // singularities of the kind $1/R$ centered at one of the vertices. Here
-    // we define a vector of four such quadratures (one per vertex of the two
-    // dimensional cells for a surface in 3d) that will be used later on;
-    // note, however, that these objects will only be used in the three
-    // dimensional case.
+                                // At the beginning, we create the
+                                // singular quadratures for the three
+                                // dimensional problem (note that a
+                                // 3d boundary integral problem
+                                // requires a 2d quadrature
+                                // formula!), since in this case they
+                                // only depend on the reference
+                                // element. This quadrature is a
+                                // standard Gauss quadrature formula
+                                // reparametrized in such a way that
+                                // allows one to integrate
+                                // singularities of the kind $1/R$
+                                // centered at one of the
+                                // vertices. Here we define a vector
+                                // of four such quadratures (one per
+                                // vertex of the two dimensional
+                                // cells for a surface in 3d) that
+                                // will be used later on; note,
+                                // however, that these objects will
+                                // only be used in the three
+                                // dimensional case.
 template <int dim>
 void BEMProblem<dim>::assemble_system() {    
-    std::vector<QGaussOneOverR<2> > sing_quadratures_3d; 
-    for(unsigned int i=0; i<4; ++i) {
-        sing_quadratures_3d.push_back
-            (QGaussOneOverR<2>(singular_quadrature_order, i, true));
-    }
+  std::vector<QGaussOneOverR<2> > sing_quadratures_3d; 
+  for(unsigned int i=0; i<4; ++i) {
+    sing_quadratures_3d.push_back
+      (QGaussOneOverR<2>(singular_quadrature_order, i, true));
+  }
     
-    // Next, we initialize an FEValues object with the quadrature formula for
-    // the integration of the kernel in non singular cells. This quadrature is
-    // selected with the parameter file, and needs to be quite precise, since
-    // the functions we are integrating are not polynomial functions.
-    FEValues<dim-1,dim> fe_v(fe, *quadrature,
-                             update_values |
-                             update_cell_normal_vectors |
-                             update_quadrature_points |
-                             update_JxW_values);
+                                  // Next, we initialize an FEValues
+                                  // object with the quadrature
+                                  // formula for the integration of
+                                  // the kernel in non singular
+                                  // cells. This quadrature is
+                                  // selected with the parameter
+                                  // file, and needs to be quite
+                                  // precise, since the functions we
+                                  // are integrating are not
+                                  // polynomial functions.
+  FEValues<dim-1,dim> fe_v(fe, *quadrature,
+                          update_values |
+                          update_cell_normal_vectors |
+                          update_quadrature_points |
+                          update_JxW_values);
     
-    const unsigned int n_q_points = fe_v.n_quadrature_points;
+  const unsigned int n_q_points = fe_v.n_quadrature_points;
     
-    std::vector<unsigned int> local_dof_indices(fe.dofs_per_cell);
+  std::vector<unsigned int> local_dof_indices(fe.dofs_per_cell);
 
-    std::vector<Vector<double> > cell_wind(n_q_points, Vector<double>(dim) );
-    double normal_wind;
+  std::vector<Vector<double> > cell_wind(n_q_points, Vector<double>(dim) );
+  double normal_wind;
     
-    // Unlike in finite element methods, if we use a collocation boundary
-    // element method, then in each assembly loop we only assemble the
-    // information that refers to the coupling between one degree of freedom
-    // (the degree associated with support point $i$) and the current
-    // cell. This is done using a vector of fe.dofs_per_cell elements, which
-    // will then be distributed to the matrix in the global row $i$. The
-    // following object will hold this information:
-    Vector<double>      local_matrix_row_i(fe.dofs_per_cell);
+                                  // Unlike in finite element
+                                  // methods, if we use a collocation
+                                  // boundary element method, then in
+                                  // each assembly loop we only
+                                  // assemble the information that
+                                  // refers to the coupling between
+                                  // one degree of freedom (the
+                                  // degree associated with support
+                                  // point $i$) and the current
+                                  // cell. This is done using a
+                                  // vector of fe.dofs_per_cell
+                                  // elements, which will then be
+                                  // distributed to the matrix in the
+                                  // global row $i$. The following
+                                  // object will hold this
+                                  // information:
+  Vector<double>      local_matrix_row_i(fe.dofs_per_cell);
     
-    // The index $i$ runs on the collocation points, which are the support
-    // points of the $i$th basis function, while $j$ runs on inner integration
-    // points. We perform the following check to ensure that we are not trying
-    // to use this code for high order elements. It will only work with Q1
-    // elements, that is, for fe.dofs_per_cell ==
-    // GeometryInfo<dim>::vertices_per_cell.
-    AssertThrow(fe.dofs_per_cell == GeometryInfo<dim-1>::vertices_per_cell,
-                ExcMessage("The code in this function can only be used for "
-                          "the usual Q1 elements."));
+                                  // The index $i$ runs on the
+                                  // collocation points, which are
+                                  // the support points of the $i$th
+                                  // basis function, while $j$ runs
+                                  // on inner integration points. We
+                                  // perform the following check to
+                                  // ensure that we are not trying to
+                                  // use this code for high order
+                                  // elements. It will only work with
+                                  // Q1 elements, that is, for
+                                  // fe.dofs_per_cell ==
+                                  // GeometryInfo<dim>::vertices_per_cell.
+  AssertThrow(fe.dofs_per_cell == GeometryInfo<dim-1>::vertices_per_cell,
+             ExcMessage("The code in this function can only be used for "
+                        "the usual Q1 elements."));
     
-    // Now that we have checked that the number of vertices is equal to the
-    // number of degrees of freedom, we construct a vector of support
-    // points which will be used in the local integrations:
-    std::vector<Point<dim> > support_points(dh.n_dofs());
-    DoFTools::map_dofs_to_support_points<dim-1, dim>( StaticMappingQ1<dim-1, dim>::mapping,
-                                                      dh, support_points);
-
-                                    // After doing so, we can start the
-                                    // integration loop over all cells, where
-                                    // we first initialize the FEValues
-                                    // object and get the values of
-                                    // $\mathbf{\tilde v}$ at the quadrature
-                                    // points (this vector field should be
-                                    // constant, but it doesn't hurt to be
-                                    // more general):
-    typename DoFHandler<dim-1,dim>::active_cell_iterator
-        cell = dh.begin_active(),
-        endc = dh.end();
+                                  // Now that we have checked that
+                                  // the number of vertices is equal
+                                  // to the number of degrees of
+                                  // freedom, we construct a vector
+                                  // of support points which will be
+                                  // used in the local integrations:
+  std::vector<Point<dim> > support_points(dh.n_dofs());
+  DoFTools::map_dofs_to_support_points<dim-1, dim>( StaticMappingQ1<dim-1, dim>::mapping,
+                                                   dh, support_points);
+
+                                  // After doing so, we can start the
+                                  // integration loop over all cells,
+                                  // where we first initialize the
+                                  // FEValues object and get the
+                                  // values of $\mathbf{\tilde v}$ at
+                                  // the quadrature points (this
+                                  // vector field should be constant,
+                                  // but it doesn't hurt to be more
+                                  // general):
+  typename DoFHandler<dim-1,dim>::active_cell_iterator
+    cell = dh.begin_active(),
+    endc = dh.end();
     
-    for(cell = dh.begin_active(); cell != endc; ++cell) {
+  for(cell = dh.begin_active(); cell != endc; ++cell) {
 
-        fe_v.reinit(cell);
-        cell->get_dof_indices(local_dof_indices);
+    fe_v.reinit(cell);
+    cell->get_dof_indices(local_dof_indices);
         
-        const std::vector<Point<dim> > &q_points = fe_v.get_quadrature_points();
-        const std::vector<Point<dim> > &normals = fe_v.get_cell_normal_vectors();
-        wind.vector_value_list(q_points, cell_wind);
+    const std::vector<Point<dim> > &q_points = fe_v.get_quadrature_points();
+    const std::vector<Point<dim> > &normals = fe_v.get_cell_normal_vectors();
+    wind.vector_value_list(q_points, cell_wind);
         
         
-            // We then form the integral over the current cell for all degrees
-            // of freedom (note that this includes degrees of freedom not
-            // located on the current cell, a deviation from the usual finite
-            // element integrals). The integral that we need to perform is
-            // singular if one of the local degrees of freedom is the same as
-            // the support point $i$. A the beginning of the loop we therefore
-            // check wether this is the case, and we store which one is the
-            // singular index:
-        for(unsigned int i=0; i<dh.n_dofs() ; ++i) {
+                                    // We then form the integral over
+                                    // the current cell for all
+                                    // degrees of freedom (note that
+                                    // this includes degrees of
+                                    // freedom not located on the
+                                    // current cell, a deviation from
+                                    // the usual finite element
+                                    // integrals). The integral that
+                                    // we need to perform is singular
+                                    // if one of the local degrees of
+                                    // freedom is the same as the
+                                    // support point $i$. A the
+                                    // beginning of the loop we
+                                    // therefore check wether this is
+                                    // the case, and we store which
+                                    // one is the singular index:
+    for(unsigned int i=0; i<dh.n_dofs() ; ++i) {
             
-            local_matrix_row_i = 0;
+      local_matrix_row_i = 0;
             
-            bool is_singular = false; 
-            unsigned int singular_index = numbers::invalid_unsigned_int;
+      bool is_singular = false; 
+      unsigned int singular_index = numbers::invalid_unsigned_int;
             
-            for(unsigned int j=0; j<fe.dofs_per_cell; ++j) 
-                if(local_dof_indices[j] == i) {
-                    singular_index = j;
-                    is_singular = true;
-                   break;
-                }
-
-                                            // We then perform the
-                                            // integral. If the index $i$ is
-                                            // not one of the local degrees
-                                            // of freedom, we simply have to
-                                            // add the single layer terms to
-                                            // the right hand side, and the
-                                            // double layer terms to the
-                                            // matrix:
-            if(is_singular == false) {
-                for(unsigned int q=0; q<n_q_points; ++q) {
-                    normal_wind = 0;
-                    for(unsigned int d=0; d<dim; ++d) 
-                        normal_wind += normals[q][d]*cell_wind[q](d);
+      for(unsigned int j=0; j<fe.dofs_per_cell; ++j) 
+       if(local_dof_indices[j] == i) {
+         singular_index = j;
+         is_singular = true;
+         break;
+       }
+
+                                      // We then perform the
+                                      // integral. If the index $i$
+                                      // is not one of the local
+                                      // degrees of freedom, we
+                                      // simply have to add the
+                                      // single layer terms to the
+                                      // right hand side, and the
+                                      // double layer terms to the
+                                      // matrix:
+      if(is_singular == false) {
+       for(unsigned int q=0; q<n_q_points; ++q) {
+         normal_wind = 0;
+         for(unsigned int d=0; d<dim; ++d) 
+           normal_wind += normals[q][d]*cell_wind[q](d);
                     
-                    const Point<dim> R = q_points[q] - support_points[i];
+         const Point<dim> R = q_points[q] - support_points[i];
                         
-                    system_rhs(i) += ( LaplaceKernel::single_layer(R)   * 
-                                       normal_wind                      *
-                                       fe_v.JxW(q) );
+         system_rhs(i) += ( LaplaceKernel::single_layer(R)   * 
+                            normal_wind                      *
+                            fe_v.JxW(q) );
                         
-                    for(unsigned int j=0; j<fe.dofs_per_cell; ++j) {
+         for(unsigned int j=0; j<fe.dofs_per_cell; ++j) {
                         
-                     local_matrix_row_i(j) += ( ( LaplaceKernel::double_layer(R)     * 
-                                                        normals[q] )            *
-                                                      fe_v.shape_value(j,q)     *
-                                                      fe_v.JxW(q)       );
-                    }
-                }
-            } else {
-                // Now we treat the more delicate case. If we are
-                // here, this means that the cell that runs on the $j$
-                // index contains support_point[i]. In this case
-                // both the single and the double layer potential are
-                // singular, and they require special treatment, as
-                // explained in the introduction.
-                //
-                // In the two dimensional case we perform the integration
-                // using a QGaussLogR quadrature formula, which is
-                // specifically designed to integrate logarithmic
-                // singularities on the unit interval, while in three
-                // dimensions we use the QGaussOneOverR class, which allows us to
-                // integrate 1/R singularities on the vertices of the
-                // reference element. Since we don't want to rebuild the two
-                // dimensional quadrature formula at each singular
-                // integration, we have built them outside the loop on the cells,
-                // and we only use a pointer to that quadrature here.
-                //
-                // Notice that in one dimensional integration this is not
-                // possible, since we need to know the scaling parameter for
-                // the quadrature, which is not known a priori. Here, the
-                // singular quadrature rule depends also on the size of the
-                // current cell. For this reason, it is necessary to create a
-                // new quadrature for each singular integration. Since we
-                // create it using the new operator of C++, we also need to
-                // destroy it using the dual of new: delete. This is done at
-                // the end, and only if dim == 2.
-                                              //
-                                              // Putting all this into a
-                                              // dimension independent
-                                              // framework requires a little
-                                              // trick. The problem is that,
-                                              // depending on dimension, we'd
-                                              // like to either assign a
-                                              // QGaussLogR<1> or a
-                                              // QGaussOneOverR<2> to a
-                                              // Quadrature<dim-1>. C++
-                                              // doesn't allow this right
-                                              // away, and neither is a
-                                              // static_cast
-                                              // possible. However, we can
-                                              // attempt a dynamic_cast: the
-                                              // implementation will then
-                                              // look up at run time whether
-                                              // the conversion is possible
-                                              // (which we <em>know</em> it
-                                              // is) and if that isn't the
-                                              // case simply return a null
-                                              // pointer. To be sure we can
-                                              // then add a safety check at
-                                              // the end:
-                Assert(singular_index != numbers::invalid_unsigned_int,
-                       ExcInternalError());
-
-                const Quadrature<dim-1> *
-                 singular_quadrature
-                 = (dim == 2
-                    ?
-                    dynamic_cast<Quadrature<dim-1>*>(
-                      new QGaussLogR<1>(singular_quadrature_order,
-                                        Point<1>((double)singular_index),
-                                        1./cell->measure()))
-                    :
-                    (dim == 3
-                     ?
-                     dynamic_cast<Quadrature<dim-1>*>(
-                       &sing_quadratures_3d[singular_index])
-                     :
-                     0));
-               Assert(singular_quadrature, ExcInternalError());
+           local_matrix_row_i(j) += ( ( LaplaceKernel::double_layer(R)     * 
+                                        normals[q] )            *
+                                      fe_v.shape_value(j,q)     *
+                                      fe_v.JxW(q)       );
+         }
+       }
+      } else {
+                                        // Now we treat the more
+                                        // delicate case. If we are
+                                        // here, this means that the
+                                        // cell that runs on the $j$
+                                        // index contains
+                                        // support_point[i]. In this
+                                        // case both the single and
+                                        // the double layer potential
+                                        // are singular, and they
+                                        // require special treatment,
+                                        // as explained in the
+                                        // introduction.
+                                        //
+                                        // In the two dimensional
+                                        // case we perform the
+                                        // integration using a
+                                        // QGaussLogR quadrature
+                                        // formula, which is
+                                        // specifically designed to
+                                        // integrate logarithmic
+                                        // singularities on the unit
+                                        // interval, while in three
+                                        // dimensions we use the
+                                        // QGaussOneOverR class,
+                                        // which allows us to
+                                        // integrate 1/R
+                                        // singularities on the
+                                        // vertices of the reference
+                                        // element. Since we don't
+                                        // want to rebuild the two
+                                        // dimensional quadrature
+                                        // formula at each singular
+                                        // integration, we have built
+                                        // them outside the loop on
+                                        // the cells, and we only use
+                                        // a pointer to that
+                                        // quadrature here.
+                                        //
+                                        // Notice that in one
+                                        // dimensional integration
+                                        // this is not possible,
+                                        // since we need to know the
+                                        // scaling parameter for the
+                                        // quadrature, which is not
+                                        // known a priori. Here, the
+                                        // singular quadrature rule
+                                        // depends also on the size
+                                        // of the current cell. For
+                                        // this reason, it is
+                                        // necessary to create a new
+                                        // quadrature for each
+                                        // singular
+                                        // integration. Since we
+                                        // create it using the new
+                                        // operator of C++, we also
+                                        // need to destroy it using
+                                        // the dual of new:
+                                        // delete. This is done at
+                                        // the end, and only if dim
+                                        // == 2.
+                                        //
+                                        // Putting all this into a
+                                        // dimension independent
+                                        // framework requires a little
+                                        // trick. The problem is that,
+                                        // depending on dimension, we'd
+                                        // like to either assign a
+                                        // QGaussLogR<1> or a
+                                        // QGaussOneOverR<2> to a
+                                        // Quadrature<dim-1>. C++
+                                        // doesn't allow this right
+                                        // away, and neither is a
+                                        // static_cast
+                                        // possible. However, we can
+                                        // attempt a dynamic_cast: the
+                                        // implementation will then
+                                        // look up at run time whether
+                                        // the conversion is possible
+                                        // (which we <em>know</em> it
+                                        // is) and if that isn't the
+                                        // case simply return a null
+                                        // pointer. To be sure we can
+                                        // then add a safety check at
+                                        // the end:
+       Assert(singular_index != numbers::invalid_unsigned_int,
+              ExcInternalError());
+
+       const Quadrature<dim-1> *
+         singular_quadrature
+         = (dim == 2
+            ?
+            dynamic_cast<Quadrature<dim-1>*>(
+              new QGaussLogR<1>(singular_quadrature_order,
+                                Point<1>((double)singular_index),
+                                1./cell->measure()))
+            :
+            (dim == 3
+             ?
+             dynamic_cast<Quadrature<dim-1>*>(
+               &sing_quadratures_3d[singular_index])
+             :
+             0));
+       Assert(singular_quadrature, ExcInternalError());
                         
-               FEValues<dim-1,dim> fe_v_singular (fe, *singular_quadrature, 
-                                                  update_jacobians |
-                                                  update_values |
-                                                  update_cell_normal_vectors |
-                                                  update_quadrature_points );
+       FEValues<dim-1,dim> fe_v_singular (fe, *singular_quadrature, 
+                                          update_jacobians |
+                                          update_values |
+                                          update_cell_normal_vectors |
+                                          update_quadrature_points );
 
-               fe_v_singular.reinit(cell);
+       fe_v_singular.reinit(cell);
                     
-               std::vector<Vector<double> > singular_cell_wind( (*singular_quadrature).size(), 
-                                                                Vector<double>(dim) );
+       std::vector<Vector<double> > singular_cell_wind( (*singular_quadrature).size(), 
+                                                        Vector<double>(dim) );
         
-               const std::vector<Point<dim> > &singular_normals = fe_v_singular.get_cell_normal_vectors();
-               const std::vector<Point<dim> > &singular_q_points = fe_v_singular.get_quadrature_points();
+       const std::vector<Point<dim> > &singular_normals = fe_v_singular.get_cell_normal_vectors();
+       const std::vector<Point<dim> > &singular_q_points = fe_v_singular.get_quadrature_points();
         
-               wind.vector_value_list(singular_q_points, singular_cell_wind);
+       wind.vector_value_list(singular_q_points, singular_cell_wind);
                     
-               for(unsigned int q=0; q<singular_quadrature->size(); ++q) {
-                 const Point<dim> R = singular_q_points[q]- support_points[i];
-                 double normal_wind = 0;
-                 for(unsigned int d=0; d<dim; ++d)
-                   normal_wind += (singular_cell_wind[q](d)*
-                                   singular_normals[q][d]);
+       for(unsigned int q=0; q<singular_quadrature->size(); ++q) {
+         const Point<dim> R = singular_q_points[q]- support_points[i];
+         double normal_wind = 0;
+         for(unsigned int d=0; d<dim; ++d)
+           normal_wind += (singular_cell_wind[q](d)*
+                           singular_normals[q][d]);
                         
-                 system_rhs(i) += ( LaplaceKernel::single_layer(R, is_singular) *
-                                    normal_wind                         *
-                                    fe_v_singular.JxW(q) );
+         system_rhs(i) += ( LaplaceKernel::single_layer(R, is_singular) *
+                            normal_wind                         *
+                            fe_v_singular.JxW(q) );
                         
-                 for(unsigned int j=0; j<fe.dofs_per_cell; ++j) {
-                   local_matrix_row_i(j) += (( LaplaceKernel::double_layer(R, is_singular) *
-                                               singular_normals[q])                *
-                                             fe_v_singular.shape_value(j,q)        *
-                                             fe_v_singular.JxW(q)       );
-                 }
-               }
-               if(dim==2) {
-                 delete singular_quadrature;
-               }
-            }
+         for(unsigned int j=0; j<fe.dofs_per_cell; ++j) {
+           local_matrix_row_i(j) += (( LaplaceKernel::double_layer(R, is_singular) *
+                                       singular_normals[q])                *
+                                     fe_v_singular.shape_value(j,q)        *
+                                     fe_v_singular.JxW(q)       );
+         }
+       }
+       if(dim==2) {
+         delete singular_quadrature;
+       }
+      }
             
-            // Finally, we need to add the contributions of the current cell
-            // to the global matrix:
-            for(unsigned int j=0; j<fe.dofs_per_cell; ++j) 
-                system_matrix.add(i,
-                                 local_dof_indices[j],
-                                 local_matrix_row_i(j));
-        }
+                                      // Finally, we need to add the
+                                      // contributions of the current
+                                      // cell to the global matrix:
+      for(unsigned int j=0; j<fe.dofs_per_cell; ++j) 
+       system_matrix.add(i,
+                         local_dof_indices[j],
+                         local_matrix_row_i(j));
     }
+  }
 
-                                    // The second part of the integral
-                                    // operator is the term
-                                    // $\alpha(\mathbf{x}_i)
-                                    // \phi_j(\mathbf{x}_i)$. Since we use a
-                                    // collocation scheme,
-                                    // $\phi_j(\mathbf{x}_i)=\delta_{ij}$ and
-                                    // the corresponding matrix is a diagonal
-                                    // one with entries equal to
-                                    // $\alpha(\mathbf{x}_i)$.
+                                  // The second part of the integral
+                                  // operator is the term
+                                  // $\alpha(\mathbf{x}_i)
+                                  // \phi_j(\mathbf{x}_i)$. Since we
+                                  // use a collocation scheme,
+                                  // $\phi_j(\mathbf{x}_i)=\delta_{ij}$
+                                  // and the corresponding matrix is
+                                  // a diagonal one with entries
+                                  // equal to $\alpha(\mathbf{x}_i)$.
     
-    // One quick way to compute this diagonal matrix of the solid angles, is
-    // to use the Neumann matrix itself. It is enough to multiply the matrix
-    // with a vector of elements all equal to -1, to get the diagonal matrix
-    // of the alpha angles, or solid angles (see the formula in the
-    // introduction for this). The result is then added back onto the system
-    // matrix object to yield the final form of the matrix:
-    Vector<double> ones(dh.n_dofs());
-    ones.add(-1.);
-
-    system_matrix.vmult(alpha, ones);
-    for(unsigned int i = 0; i<dh.n_dofs(); ++i)
-      system_matrix.add(i,i,alpha(i));
+                                  // One quick way to compute this
+                                  // diagonal matrix of the solid
+                                  // angles, is to use the Neumann
+                                  // matrix itself. It is enough to
+                                  // multiply the matrix with a
+                                  // vector of elements all equal to
+                                  // -1, to get the diagonal matrix
+                                  // of the alpha angles, or solid
+                                  // angles (see the formula in the
+                                  // introduction for this). The
+                                  // result is then added back onto
+                                  // the system matrix object to
+                                  // yield the final form of the
+                                  // matrix:
+  Vector<double> ones(dh.n_dofs());
+  ones.add(-1.);
+
+  system_matrix.vmult(alpha, ones);
+  for(unsigned int i = 0; i<dh.n_dofs(); ++i)
+    system_matrix.add(i,i,alpha(i));
 }
 
 
                                 // @sect4{BEMProblem::solve_system}
 
-                                // The next function simply solves the linear
-                                // system. As described, we use the
-                                // SparseDirectUMFPACK direct solver to
-                                // compute the inverse of the matrix (in
-                                // reality it only produces an LU
-                                // decomposition) and then apply this inverse
-                                // to the right hand side to yield the
-                                // solution.
+                                // The next function simply solves
+                                // the linear system. As described,
+                                // we use the SparseDirectUMFPACK
+                                // direct solver to compute the
+                                // inverse of the matrix (in reality
+                                // it only produces an LU
+                                // decomposition) and then apply this
+                                // inverse to the right hand side to
+                                // yield the solution.
                                 //
                                 // As mentioned in the introduction,
                                 // the solution is only known up to a
@@ -890,236 +1225,258 @@ void BEMProblem<dim>::assemble_system() {
                                 // vector entry to normalize it.
 template <int dim>
 void BEMProblem<dim>::solve_system() {
-    SparseDirectUMFPACK inverse_matrix;
-    inverse_matrix.initialize (system_matrix);
-    inverse_matrix.vmult (phi, system_rhs);
+  SparseDirectUMFPACK inverse_matrix;
+  inverse_matrix.initialize (system_matrix);
+  inverse_matrix.vmult (phi, system_rhs);
 
-    phi.add(-phi.mean_value());
+  phi.add(-phi.mean_value());
 }
 
 
                                 // @sect4{BEMProblem::solve_system}
 
-    // The computation of the errors is exactly the same in all other
-    // example programs, and we won't comment too much. Notice how the
-    // same methods that are used in the finite element methods can be
-    // used here.
+                                // The computation of the errors is
+                                // exactly the same in all other
+                                // example programs, and we won't
+                                // comment too much. Notice how the
+                                // same methods that are used in the
+                                // finite element methods can be used
+                                // here.
 template <int dim>
 void BEMProblem<dim>::compute_errors(const unsigned int cycle) {
-    Vector<float> difference_per_cell (tria.n_active_cells());
-    VectorTools::integrate_difference (dh, phi,
-                                      exact_solution,
-                                      difference_per_cell,
-                                      QGauss<(dim-1)>(3),
-                                      VectorTools::L2_norm);
-    const double L2_error = difference_per_cell.l2_norm();
+  Vector<float> difference_per_cell (tria.n_active_cells());
+  VectorTools::integrate_difference (dh, phi,
+                                    exact_solution,
+                                    difference_per_cell,
+                                    QGauss<(dim-1)>(3),
+                                    VectorTools::L2_norm);
+  const double L2_error = difference_per_cell.l2_norm();
 
     
-    // The error in the alpha vector can be computed directly using the
-    // Vector::linfty_norm() function, since on each node, the value should be
-    // $\frac 12$. All errors are then output and appended to our
-    // ConvergenceTable object for later computation of convergence rates:
-    Vector<double> difference_per_node(alpha);
-    difference_per_node.add(-.5);
+                                  // The error in the alpha vector
+                                  // can be computed directly using
+                                  // the Vector::linfty_norm()
+                                  // function, since on each node,
+                                  // the value should be $\frac
+                                  // 12$. All errors are then output
+                                  // and appended to our
+                                  // ConvergenceTable object for
+                                  // later computation of convergence
+                                  // rates:
+  Vector<double> difference_per_node(alpha);
+  difference_per_node.add(-.5);
     
-    const double alpha_error = difference_per_node.linfty_norm();
-    const unsigned int n_active_cells=tria.n_active_cells();
-    const unsigned int n_dofs=dh.n_dofs();
+  const double alpha_error = difference_per_node.linfty_norm();
+  const unsigned int n_active_cells=tria.n_active_cells();
+  const unsigned int n_dofs=dh.n_dofs();
     
-    deallog << "Cycle " << cycle << ':' 
-           << std::endl
-           << "   Number of active cells:       "
-           << n_active_cells
-           << std::endl
-           << "   Number of degrees of freedom: "
-           << n_dofs
-           << std::endl;
+  deallog << "Cycle " << cycle << ':' 
+         << std::endl
+         << "   Number of active cells:       "
+         << n_active_cells
+         << std::endl
+         << "   Number of degrees of freedom: "
+         << n_dofs
+         << std::endl;
     
-    convergence_table.add_value("cycle", cycle);
-    convergence_table.add_value("cells", n_active_cells);
-    convergence_table.add_value("dofs", n_dofs);
-    convergence_table.add_value("L2(phi)", L2_error);
-    convergence_table.add_value("Linfty(alpha)", alpha_error);
+  convergence_table.add_value("cycle", cycle);
+  convergence_table.add_value("cells", n_active_cells);
+  convergence_table.add_value("dofs", n_dofs);
+  convergence_table.add_value("L2(phi)", L2_error);
+  convergence_table.add_value("Linfty(alpha)", alpha_error);
 }
 
 
                                 // @sect4{BEMProblem::compute_exterior_solution}
 
-                                // We'd like to also know something about the
-                                // value of the potential $\phi$ in the
-                                // exterior domain: after all our motivation
-                                // to consider the boundary integral problem
-                                // was that we wanted to know the velocity in
-                                // the exterior domain!
+                                // We'd like to also know something
+                                // about the value of the potential
+                                // $\phi$ in the exterior domain:
+                                // after all our motivation to
+                                // consider the boundary integral
+                                // problem was that we wanted to know
+                                // the velocity in the exterior
+                                // domain!
                                 //
- // To this end, let us assume here that the boundary element domain is
- // contained in the box $[-2,2]^{\text{dim}}$, and we extrapolate the actual
- // solution inside this box using the convolution with the fundamental
- // solution. The formula for this is given in the introduction.
- //
-    // The reconstruction of the solution in the entire space is done on a
-    // continuous finite element grid of dimension dim. These are the usual
-    // ones, and we don't comment any further on them. At the end of the
-    // function, we output this exterior solution in, again, much the usual
-    // way.
+                                // To this end, let us assume here
+                                // that the boundary element domain
+                                // is contained in the box
+                                // $[-2,2]^{\text{dim}}$, and we
+                                // extrapolate the actual solution
+                                // inside this box using the
+                                // convolution with the fundamental
+                                // solution. The formula for this is
+                                // given in the introduction.
+                                //
+                                // The reconstruction of the solution
+                                // in the entire space is done on a
+                                // continuous finite element grid of
+                                // dimension dim. These are the usual
+                                // ones, and we don't comment any
+                                // further on them. At the end of the
+                                // function, we output this exterior
+                                // solution in, again, much the usual
+                                // way.
 template <int dim>
 void BEMProblem<dim>::compute_exterior_solution() {
-    Triangulation<dim>  external_tria;
-    GridGenerator::hyper_cube(external_tria, -2, 2);
+  Triangulation<dim>  external_tria;
+  GridGenerator::hyper_cube(external_tria, -2, 2);
 
-    FE_Q<dim>           external_fe(1);
-    DoFHandler<dim>     external_dh (external_tria);
-    Vector<double>      external_phi;    
+  FE_Q<dim>           external_fe(1);
+  DoFHandler<dim>     external_dh (external_tria);
+  Vector<double>      external_phi;    
   
-    external_tria.refine_global(external_refinement);
-    external_dh.distribute_dofs(external_fe);
-    external_phi.reinit(external_dh.n_dofs());
+  external_tria.refine_global(external_refinement);
+  external_dh.distribute_dofs(external_fe);
+  external_phi.reinit(external_dh.n_dofs());
     
-    typename DoFHandler<dim-1,dim>::active_cell_iterator
-        cell = dh.begin_active(),
-        endc = dh.end();
+  typename DoFHandler<dim-1,dim>::active_cell_iterator
+    cell = dh.begin_active(),
+    endc = dh.end();
 
 
-    FEValues<dim-1,dim> fe_v(fe, *quadrature,
-                             update_values |
-                             update_cell_normal_vectors |
-                             update_quadrature_points |
-                             update_JxW_values);
+  FEValues<dim-1,dim> fe_v(fe, *quadrature,
+                          update_values |
+                          update_cell_normal_vectors |
+                          update_quadrature_points |
+                          update_JxW_values);
     
-    const unsigned int n_q_points = fe_v.n_quadrature_points;
+  const unsigned int n_q_points = fe_v.n_quadrature_points;
     
-    std::vector<unsigned int> dofs(fe.dofs_per_cell);
+  std::vector<unsigned int> dofs(fe.dofs_per_cell);
     
-    std::vector<double> local_phi(n_q_points);
-    std::vector<double> normal_wind(n_q_points);
-    std::vector<Vector<double> > local_wind(n_q_points, Vector<double>(dim) );
+  std::vector<double> local_phi(n_q_points);
+  std::vector<double> normal_wind(n_q_points);
+  std::vector<Vector<double> > local_wind(n_q_points, Vector<double>(dim) );
     
-    typename DoFHandler<dim>::active_cell_iterator
-        external_cell = external_dh.begin_active(),
-        external_endc = external_dh.end();
+  typename DoFHandler<dim>::active_cell_iterator
+    external_cell = external_dh.begin_active(),
+    external_endc = external_dh.end();
 
-    std::vector<Point<dim> > external_support_points(external_dh.n_dofs());
-    DoFTools::map_dofs_to_support_points<dim>( StaticMappingQ1<dim>::mapping,
-                                               external_dh, external_support_points);
+  std::vector<Point<dim> > external_support_points(external_dh.n_dofs());
+  DoFTools::map_dofs_to_support_points<dim>( StaticMappingQ1<dim>::mapping,
+                                            external_dh, external_support_points);
     
-    for(cell = dh.begin_active(); cell != endc; ++cell) {
-        fe_v.reinit(cell);
+  for(cell = dh.begin_active(); cell != endc; ++cell) {
+    fe_v.reinit(cell);
                     
-        const std::vector<Point<dim> > &q_points = fe_v.get_quadrature_points();
-        const std::vector<Point<dim> > &normals = fe_v.get_cell_normal_vectors();
+    const std::vector<Point<dim> > &q_points = fe_v.get_quadrature_points();
+    const std::vector<Point<dim> > &normals = fe_v.get_cell_normal_vectors();
         
-        cell->get_dof_indices(dofs);
-        fe_v.get_function_values(phi, local_phi);
+    cell->get_dof_indices(dofs);
+    fe_v.get_function_values(phi, local_phi);
         
-        wind.vector_value_list(q_points, local_wind);
+    wind.vector_value_list(q_points, local_wind);
         
-        for(unsigned int q=0; q<n_q_points; ++q){
-            normal_wind[q] = 0;
-            for(unsigned int d=0; d<dim; ++d) 
-                normal_wind[q] += normals[q][d]*local_wind[q](d);
-        }
+    for(unsigned int q=0; q<n_q_points; ++q){
+      normal_wind[q] = 0;
+      for(unsigned int d=0; d<dim; ++d) 
+       normal_wind[q] += normals[q][d]*local_wind[q](d);
+    }
             
-        for(unsigned int i=0; i<external_dh.n_dofs(); ++i) {
+    for(unsigned int i=0; i<external_dh.n_dofs(); ++i) {
             
-            for(unsigned int q=0; q<n_q_points; ++q) {
+      for(unsigned int q=0; q<n_q_points; ++q) {
                 
-             const Point<dim> R =  q_points[q] - external_support_points[i];
+       const Point<dim> R =  q_points[q] - external_support_points[i];
                         
-                external_phi(i) += ( ( LaplaceKernel::single_layer(R) * 
-                                       normal_wind[q]
-                                      +
-                                       (LaplaceKernel::double_layer(R) * 
-                                        normals[q] )            *
-                                       local_phi[q] )           *
-                                     fe_v.JxW(q) );
-            }
-        }
+       external_phi(i) += ( ( LaplaceKernel::single_layer(R) * 
+                              normal_wind[q]
+                              +
+                              (LaplaceKernel::double_layer(R) * 
+                               normals[q] )            *
+                              local_phi[q] )           *
+                            fe_v.JxW(q) );
+      }
     }
+  }
     
-    DataOut<dim> data_out;
+  DataOut<dim> data_out;
     
-    data_out.attach_dof_handler(external_dh);
-    data_out.add_data_vector(external_phi, "external_phi");
-    data_out.build_patches();
+  data_out.attach_dof_handler(external_dh);
+  data_out.add_data_vector(external_phi, "external_phi");
+  data_out.build_patches();
     
-    const std::string
-      filename = Utilities::int_to_string(dim) + "d_external.vtk";
-    std::ofstream file(filename.c_str());
+  const std::string
+    filename = Utilities::int_to_string(dim) + "d_external.vtk";
+  std::ofstream file(filename.c_str());
 
-    data_out.write_vtk(file);
+  data_out.write_vtk(file);
 }
 
 
                                 // @sect4{BEMProblem::output_results}
 
-                                // Outputting the results of our computations
-                                // is a rather mechanical tasks. All the
-                                // components of this function have been
-                                // discussed before.
+                                // Outputting the results of our
+                                // computations is a rather
+                                // mechanical tasks. All the
+                                // components of this function have
+                                // been discussed before.
 template <int dim>
 void BEMProblem<dim>::output_results(const unsigned int cycle) {
     
-    DataOut<dim-1, DoFHandler<dim-1, dim> > dataout;
+  DataOut<dim-1, DoFHandler<dim-1, dim> > dataout;
     
-    dataout.attach_dof_handler(dh);
-    dataout.add_data_vector(phi, "phi");
-    dataout.add_data_vector(alpha, "alpha");
-    dataout.build_patches();
+  dataout.attach_dof_handler(dh);
+  dataout.add_data_vector(phi, "phi");
+  dataout.add_data_vector(alpha, "alpha");
+  dataout.build_patches();
     
-    std::string filename = ( Utilities::int_to_string(dim) + 
-                             "d_boundary_solution_" +
-                             Utilities::int_to_string(cycle) +
-                             ".vtk" );
-    std::ofstream file(filename.c_str());
+  std::string filename = ( Utilities::int_to_string(dim) + 
+                          "d_boundary_solution_" +
+                          Utilities::int_to_string(cycle) +
+                          ".vtk" );
+  std::ofstream file(filename.c_str());
     
-    dataout.write_vtk(file);
+  dataout.write_vtk(file);
     
-    if(cycle == n_cycles-1) {
-       convergence_table.set_precision("L2(phi)", 3);
-       convergence_table.set_precision("Linfty(alpha)", 3);
+  if(cycle == n_cycles-1) {
+    convergence_table.set_precision("L2(phi)", 3);
+    convergence_table.set_precision("Linfty(alpha)", 3);
        
-       convergence_table.set_scientific("L2(phi)", true);
-       convergence_table.set_scientific("Linfty(alpha)", true);
+    convergence_table.set_scientific("L2(phi)", true);
+    convergence_table.set_scientific("Linfty(alpha)", true);
        
-       convergence_table
-           .evaluate_convergence_rates("L2(phi)", ConvergenceTable::reduction_rate_log2);
-       convergence_table
-           .evaluate_convergence_rates("Linfty(alpha)", ConvergenceTable::reduction_rate_log2);
-       deallog << std::endl;
-       convergence_table.write_text(std::cout);
-    }
+    convergence_table
+      .evaluate_convergence_rates("L2(phi)", ConvergenceTable::reduction_rate_log2);
+    convergence_table
+      .evaluate_convergence_rates("Linfty(alpha)", ConvergenceTable::reduction_rate_log2);
+    deallog << std::endl;
+    convergence_table.write_text(std::cout);
+  }
 }
 
 
                                 // @sect4{BEMProblem::run}
 
-                                // This is the main function. It should be
-                                // self explanatory in its briefness:
+                                // This is the main function. It
+                                // should be self explanatory in its
+                                // briefness:
 template <int dim>
 void BEMProblem<dim>::run() {
     
-    read_parameters("parameters.prm");
+  read_parameters("parameters.prm");
 
-    if(run_in_this_dimension == false)
-      {
-       deallog << "Run in dimension " << dim 
-                << " explicitly disabled in parameter file. " 
-                << std::endl;
-       return;
-      }
+  if(run_in_this_dimension == false)
+    {
+      deallog << "Run in dimension " << dim 
+             << " explicitly disabled in parameter file. " 
+             << std::endl;
+      return;
+    }
     
-    read_domain();
+  read_domain();
         
-    for(unsigned int cycle=0; cycle<n_cycles; ++cycle) {
-      refine_and_resize();
-      assemble_system();
-      solve_system();
-      compute_errors(cycle);
-      output_results(cycle);
-    }
+  for(unsigned int cycle=0; cycle<n_cycles; ++cycle) {
+    refine_and_resize();
+    assemble_system();
+    solve_system();
+    compute_errors(cycle);
+    output_results(cycle);
+  }
     
-    if(extend_solution == true)
-      compute_exterior_solution();
+  if(extend_solution == true)
+    compute_exterior_solution();
 }
 
 
@@ -1131,14 +1488,14 @@ void BEMProblem<dim>::run() {
 int main ()
 {
   try
-  {
+    {
       deallog.depth_console (3);
       BEMProblem<2> laplace_problem_2d;
       laplace_problem_2d.run();
 
       BEMProblem<3> laplace_problem_3d;      
       laplace_problem_3d.run();
-  }
+    }
   catch (std::exception &exc)
     {
       std::cerr << std::endl << std::endl

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.