]> https://gitweb.dealii.org/ - dealii.git/commitdiff
More text.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Fri, 14 Sep 2001 12:08:21 +0000 (12:08 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Fri, 14 Sep 2001 12:08:21 +0000 (12:08 +0000)
git-svn-id: https://svn.dealii.org/trunk@5007 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-11/step-11.cc

index a4f38dd0821f1be7c00a3e9042a19e6e3d35d70a..13a869057f86de9f9df9c1ea202912ec6b91807e 100644 (file)
 #include <algorithm>
 
 
-template <int dim>
-double measure (const DoFHandler<dim> &dof_handler,
-               const Mapping<dim>    &mapping)
-{
-  QGauss4<dim> quadrature;
-  FEValues<dim> fe_values (mapping, dof_handler.get_fe(), quadrature,
-                          update_JxW_values);
-  
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = dof_handler.begin_active(),
-    endc = dof_handler.end();
-  double measure = 0;
-  for (; cell!=endc; ++cell)
-    {
-      fe_values.reinit (cell);
-      for (unsigned int i=0; i<fe_values.n_quadrature_points; ++i)
-       measure += fe_values.JxW (i);
-    };
-  return measure;
-};
-
-
-template <int dim>
-double measure (const Triangulation<dim> &triangulation,
-               const Mapping<dim>       &mapping)
-{
-  FE_Q<dim> dummy_fe(1);
-  DoFHandler<dim> dof_handler (const_cast<Triangulation<dim>&>(triangulation));
-  dof_handler.distribute_dofs(dummy_fe);
-  return measure (dof_handler, mapping);
-};
-
-
-template <int dim>
-double surface (const DoFHandler<dim> &dof_handler,
-               const Mapping<dim>    &mapping)
-{
-  QGauss4<dim-1> quadrature;
-  FEFaceValues<dim> fe_values (mapping, dof_handler.get_fe(), quadrature,
-                              update_JxW_values);
-  
-  typename DoFHandler<dim>::active_cell_iterator
-    cell = dof_handler.begin_active(),
-    endc = dof_handler.end();
-  double surface = 0;
-  for (; cell!=endc; ++cell)
-    for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
-      if (cell->face(face)->at_boundary())
-       {
-         fe_values.reinit (cell, face);
-         for (unsigned int i=0; i<fe_values.n_quadrature_points; ++i)
-           surface += fe_values.JxW (i);
-       };
-  return surface;
-};
-
-
-template <int dim>
-double surface (const Triangulation<dim> &triangulation,
-               const Mapping<dim>       &mapping)
-{
-  FE_Q<dim> dummy_fe(1);
-  DoFHandler<dim> dof_handler (const_cast<Triangulation<dim>&>(triangulation));
-  dof_handler.distribute_dofs(dummy_fe);
-  return surface (dof_handler, mapping);
-};
-
-
-template double surface (const Triangulation<2> &, const Mapping<2> &);
-template double measure (const Triangulation<2> &, const Mapping<2> &);
-
-
-
 
                                 // Then we declare a class which
                                 // represents the solution of a
@@ -123,9 +50,11 @@ template double measure (const Triangulation<2> &, const Mapping<2> &);
                                 // program is based on step-5, the
                                 // class looks rather the same, with
                                 // the sole structural difference
-                                // that we have merged the functions
-                                // ``assemble_system'' and ``solve'',
-                                // and the output function was
+                                // that the functions
+                                // ``assemble_system'' now calls
+                                // ``solve'' itself, and is thus
+                                // called ``assemble_and_solve'', and
+                                // that the output function was
                                 // dropped since the solution
                                 // function is so boring that it is
                                 // not worth being viewed.
@@ -270,49 +199,267 @@ void LaplaceProblem<dim>::setup_system ()
 
 
 
+                                // The next function then assembles
+                                // the linear system of equations,
+                                // solves it, and evaluates the
+                                // solution. This then makes three
+                                // actions, and we will put them into
+                                // eight true statements (excluding
+                                // declaration of variables, and
+                                // handling of temporary
+                                // vectors). Thus, this function is
+                                // something for the very
+                                // lazy. Nevertheless, the functions
+                                // called are rather powerful, and
+                                // through them this function uses a
+                                // good deal of the whole
+                                // library. But let's look at each of
+                                // the steps.
 template <int dim>
 void LaplaceProblem<dim>::assemble_and_solve () 
-{  
-  QGauss2<dim>  cell_quadrature;
-  QGauss2<dim-1> face_quadrature;
+{
+
+                                  // First, we have to assemble the
+                                  // matrix and the right hand
+                                  // side. In all previous examples,
+                                  // we have investigated various
+                                  // ways how to do this
+                                  // manually. However, since the
+                                  // Laplace matrix and simple right
+                                  // hand sides appear so frequently
+                                  // in applications, the library
+                                  // provides functions for actually
+                                  // doing this for you, i.e. they
+                                  // perform the loop over all cells,
+                                  // setting up the local matrices
+                                  // and vectors, and putting them
+                                  // together for the end result.
+                                  //
+                                  // The following are the two most
+                                  // commonly used ones: creation of
+                                  // the Laplace matrix and creation
+                                  // of a right hand side vector from
+                                  // body or boundary forces. They
+                                  // take the mapping object, the
+                                  // ``DoFHandler'' object
+                                  // representing the degrees of
+                                  // freedom and the finite element
+                                  // in use, a quadrature formula to
+                                  // be used, and the output
+                                  // object. The function that
+                                  // creates a right hand side vector
+                                  // also has to take a function
+                                  // object describing the
+                                  // (continuous) right hand side
+                                  // function.
+                                  //
+                                  // Let us look at the way the
+                                  // matrix and body forces are
+                                  // integrated:
+  const unsigned int gauss_degree
+    = std::max (static_cast<unsigned int>(ceil(1.*(mapping.get_degree()+1)/2)),
+               2U);
   MatrixTools::create_laplace_matrix (mapping, dof_handler,
-                                     cell_quadrature,
+                                     QGauss<dim>(gauss_degree),
                                      system_matrix);
   VectorTools::create_right_hand_side (mapping, dof_handler,
-                                      cell_quadrature,
+                                      QGauss<dim>(gauss_degree),
                                       ConstantFunction<dim>(-2),
                                       system_rhs);
-  
+                                  // That's quite simple, right?
+                                  //
+                                  // Two remarks are in order,
+                                  // though: First, these functions
+                                  // are used in a lot of
+                                  // contexts. Maybe you want to
+                                  // create a Laplace or mass matrix
+                                  // for a vector values finite
+                                  // element; or you want to use the
+                                  // default Q1 mapping; or you want
+                                  // to assembled the matrix with a
+                                  // coefficient in the Laplace
+                                  // operator. For this reason, there
+                                  // are quite a large number of
+                                  // variants of these functions in
+                                  // the ``MatrixCreator'' and
+                                  // ``MatrixTools''
+                                  // classes. Whenever you need a
+                                  // slighly different version of
+                                  // these functions than the ones
+                                  // called above, it is certainly
+                                  // worthwhile to take a look at the
+                                  // documentation and to check
+                                  // whether something fits your
+                                  // needs.
+                                  //
+                                  // The second remark concerns the
+                                  // quadrature formula we use: we
+                                  // want to integrate over bilinear
+                                  // shape functions, so we know that
+                                  // we have to use at least a Gauss2
+                                  // quadrature formula. On the other
+                                  // hand, we want to have the
+                                  // quadrature rule to have at least
+                                  // the order of the boundary
+                                  // approximation. Since the order
+                                  // of Gauss-r is 2r, and the order
+                                  // of the boundary approximation
+                                  // using polynomials of degree p is
+                                  // p+1, we know that 2r>=p+1. Since
+                                  // r has to be an integer and (as
+                                  // mentioned above) has to be at
+                                  // least 2, this makes up for the
+                                  // formula above computing
+                                  // ``gauss_degree''.
+                                  //
+                                  // Note also, that we have used a
+                                  // class called ``QGauss''. By now,
+                                  // we have only used ``QGauss4'',
+                                  // or the like, which implement a
+                                  // Gauss quadrature rule of fixed
+                                  // order. The ``QGauss'' class is
+                                  // more general, taking a parameter
+                                  // which indicates of which degree
+                                  // it shall be; for small degrees,
+                                  // the object then parallels
+                                  // objects of type ``QGaussR'' with
+                                  // fixed R, but it also provides
+                                  // quadrature rules of higher
+                                  // degree which are no longer
+                                  // hardcoded in the library.
+
+                                  // Since the generation of the body
+                                  // force contributions to the right
+                                  // hand side vector was so simple,
+                                  // we do that all over again for
+                                  // the boundary forces as well:
+                                  // allocate a vector of the right
+                                  // size and call the right
+                                  // function. The boundary function
+                                  // has constant values, so we can
+                                  // generate an object from the
+                                  // library on the fly, and we use
+                                  // the same quadrature formula as
+                                  // above, but this time of lower
+                                  // dimension since we integrate
+                                  // over faces now instead of cells:
   Vector<double> tmp (system_rhs.size());
   VectorTools::create_boundary_right_hand_side (mapping, dof_handler,
-                                               face_quadrature,
+                                               QGauss<dim-1>(gauss_degree),
                                                ConstantFunction<dim>(1),
                                                tmp);
+                                  // Then add the contributions from
+                                  // the boundary to those from the
+                                  // interior of the domain:
   system_rhs += tmp;
-
+                                  // For assembling the right hand
+                                  // side, we had to use two
+                                  // different vector objects, and
+                                  // later add them together. The
+                                  // reason we had to do so is that
+                                  // the
+                                  // ``VectorTools::create_right_hand_side''
+                                  // and
+                                  // ``VectorTools::create_boundary_right_hand_side''
+                                  // functions first clear the output
+                                  // vector, rather than adding up
+                                  // their results to previous
+                                  // contents. This can reasonably be
+                                  // called a design flaw in the
+                                  // library made in its infancy, but
+                                  // unfortunately things are as they
+                                  // are for some time now and it is
+                                  // difficult to change such things
+                                  // that silently break existing
+                                  // code, so we have to live with
+                                  // that.
+
+                                  // Now, the linear system is set
+                                  // up, so we can eliminate the one
+                                  // degree of freedom which we
+                                  // constrained to the other DoFs on
+                                  // the boundary for the mean value
+                                  // constraint from matrix and right
+                                  // hand side vector, and solve the
+                                  // system. After that, distribute
+                                  // the constraints again, which in
+                                  // this case means setting the
+                                  // constrained degree of freedom to
+                                  // its proper value
   mean_value_constraints.condense (system_matrix);
   mean_value_constraints.condense (system_rhs);  
 
   solve ();
   mean_value_constraints.distribute (solution);
-  
-  Vector<float> difference_per_cell (triangulation.n_active_cells());
+
+                                  // Finally, evaluate what we got as
+                                  // solution. As stated in the
+                                  // introduction, we are interested
+                                  // in the H1 seminorm of the
+                                  // solution. Here, as well, we have
+                                  // a function in the library that
+                                  // does this, although in a
+                                  // slightly non-obvious way: the
+                                  // ``VectorTools::integrate_difference''
+                                  // function integrates the norm of
+                                  // the difference between a finite
+                                  // element function and a
+                                  // continuous function. If we
+                                  // therefore want the norm of a
+                                  // finite element field, we just
+                                  // put the continuous function to
+                                  // zero. Note that this function,
+                                  // just as so many other ones in
+                                  // the library as well, has at
+                                  // least two versions, one which
+                                  // takes a mapping as argument
+                                  // (which we make us of here), and
+                                  // the one which we have used in
+                                  // previous examples which
+                                  // implicitely uses ``MappingQ1''.
+                                  // Also note that we take a
+                                  // quadrature formula of one degree
+                                  // higher, in order to avoid
+                                  // superconvergence effects where
+                                  // the solution happens to be
+                                  // especially close to the exact
+                                  // solution at certain points (we
+                                  // don't know whether this might be
+                                  // the case here, but there are
+                                  // cases known of this, and we just
+                                  // want to make sure):
+  Vector<float> norm_per_cell (triangulation.n_active_cells());
   VectorTools::integrate_difference (mapping, dof_handler,
                                     solution,
                                     ZeroFunction<dim>(),
-                                    difference_per_cell,
-                                    QGauss3<dim>(),
+                                    norm_per_cell,
+                                    QGauss<dim>(gauss_degree+1),
                                     H1_seminorm);
+                                  // Then, the function just called
+                                  // returns its results as a vector
+                                  // of values each of which denotes
+                                  // the norm on one cell. To get the
+                                  // global norm, a simple
+                                  // computation shows that we have
+                                  // to take the l2 norm of the
+                                  // vector:
+  const double norm = norm_per_cell.l2_norm();
+
+                                  // Last task -- show output:
   std::cout << "  " << triangulation.n_active_cells() << " cells:  "
            << "  |u|_1="
-           << difference_per_cell.l2_norm()
+           << norm
            << ", error="
-           << fabs(difference_per_cell.l2_norm()-sqrt(3.14159265358/2))
+           << fabs(norm-sqrt(3.14159265358/2))
            << std::endl;
 };
 
 
 
+                                // The following function solving the
+                                // linear system of equations is
+                                // copied from step-5 and is
+                                // explained there in some detail:
 template <int dim>
 void LaplaceProblem<dim>::solve () 
 {
@@ -329,6 +476,34 @@ void LaplaceProblem<dim>::solve ()
 
 
 
+                                // Finally the main function
+                                // controlling the different steps to
+                                // be performed. Its content is
+                                // rather straightforward, generating
+                                // a triangulation of a circle,
+                                // associating a boundary to it, and
+                                // then doing several cycles on
+                                // subsequently finer grids. Note
+                                // again that we have put mesh
+                                // refinement into the loop header;
+                                // this may be something for a test
+                                // program, but for real applications
+                                // you should consider that this
+                                // implies that the mesh is refined
+                                // after the loop is executed the
+                                // last time since the increment
+                                // clause (the last part of the
+                                // three-parted loop header) is
+                                // executed before the comparison
+                                // part (the second one), which may
+                                // be rather costly if the mesh is
+                                // already quite refined. In that
+                                // case, you should arrange code such
+                                // that the mesh is not further
+                                // refined after the last loop run
+                                // (or you should do it at the
+                                // beginning of each run except for
+                                // the first one).
 template <int dim>
 void LaplaceProblem<dim>::run () 
 {

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.