]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Ameliorated parameter selection, and assembly of the system matrix. Now it is slightl...
authorLuca Heltai <luca.heltai@sissa.it>
Tue, 3 Mar 2009 18:07:13 +0000 (18:07 +0000)
committerLuca Heltai <luca.heltai@sissa.it>
Tue, 3 Mar 2009 18:07:13 +0000 (18:07 +0000)
git-svn-id: https://svn.dealii.org/trunk@18444 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-34/parameters.prm
deal.II/examples/step-34/step-34.cc

index b4995437f6c21d888ebeb1356860ea6dc16caf94..d91513a95629085cf5f0e4f1ee5f2b6ee77b19e1 100644 (file)
@@ -1,8 +1,14 @@
 # Listing of Parameters
 # ---------------------
-
 set Number of cycles = 3
 
+
+subsection Inner quadrature rule
+  set Quadrature order = 2
+  set Quadrature type  = gauss
+end
+
+
 subsection Outer quadrature rule
   set Quadrature order = 0
   set Quadrature type  = midpoint
@@ -11,11 +17,11 @@ end
 
 subsection Wind function
   # Any constant used inside the function which is not a variable name.
-  set Function constants  = angle=0
+  set Function constants  = 
 
   # Separate vector valued expressions by ';' as ',' is used internally by the
   # function parser.
-  set Function expression = cos(angle); sin(angle); 0
+  set Function expression = 1; 0; 0
 
   # The name of the variables as they will be used in the function, separated
   # by ','.
index c39ccb761d2663b6ecd3f8b838a9cba6f56c2f12..eb87d303136498eaa9b7d9bc1e6c776205cf0668 100644 (file)
@@ -82,8 +82,16 @@ public:
     // \f]
     void compute_SD_integral_on_cell(vector<vector<vector<double> > > &dst,
                                     typename DoFHandler<dim-1,dim>::active_cell_iterator &cell,
-                                    const vector<Point<dim> > &q);
+                                    const vector<Point<dim> > &q,
+                                    const Function<dim> &rhs);
 
+    // The following two functions are the actual calculations of the
+    // single and double layer potential kernels, with a minus sign in
+    // front of them. They are well defined only if the vector $r =
+    // x-y$ is different from zero.
+    double nS(const Point<dim> &R);
+    Point<dim> nD(const Point<dim> &R);
+    
 private:
     // The following two helper functions should only be called when
     // dim=3. If this is not the case, the default implementation is
@@ -170,7 +178,8 @@ private:
     // quadrature.  We use a parsed function, for its ease of
     // definition, and the quadrature formula
     Functions::ParsedFunction<dim> wind;
-    SmartPointer<Quadrature<dim-1> > quadrature_pointer;
+    SmartPointer<Quadrature<dim-1> > outer_quadrature_pointer;
+    SmartPointer<Quadrature<dim-1> > inner_quadrature_pointer;
     unsigned int n_cycles;
 };
 
@@ -204,6 +213,13 @@ void BEMProblem<dim>::read_parameters(std::string filename) {
                      Patterns::Selection(QuadratureSelector<(dim-1)>::get_quadrature_names()));
     prm.declare_entry("Quadrature order", "0", Patterns::Integer());
     prm.leave_subsection();
+
+
+    prm.enter_subsection("Inner quadrature rule");
+    prm.declare_entry("Quadrature type", "midpoint", 
+                     Patterns::Selection(QuadratureSelector<(dim-1)>::get_quadrature_names()));
+    prm.declare_entry("Quadrature order", "0", Patterns::Integer());
+    prm.leave_subsection();
     
     prm.enter_subsection("Wind function");
     Functions::ParsedFunction<dim>::declare_parameters(prm, dim);
@@ -214,7 +230,14 @@ void BEMProblem<dim>::read_parameters(std::string filename) {
     n_cycles = prm.get_integer("Number of cycles");                  
                      
     prm.enter_subsection("Outer quadrature rule");
-    static QuadratureSelector<dim-1> quadrature
+    static QuadratureSelector<dim-1> outer_quadrature
+                     (prm.get("Quadrature type"),
+                      prm.get_integer("Quadrature order"));
+    prm.leave_subsection();
+
+
+    prm.enter_subsection("Inner quadrature rule");
+    static QuadratureSelector<dim-1> inner_quadrature
                      (prm.get("Quadrature type"),
                       prm.get_integer("Quadrature order"));
     prm.leave_subsection();
@@ -223,9 +246,41 @@ void BEMProblem<dim>::read_parameters(std::string filename) {
     wind.parse_parameters(prm);
     prm.leave_subsection();
 
-    quadrature_pointer = &quadrature;
+    outer_quadrature_pointer = &outer_quadrature;
+    inner_quadrature_pointer = &inner_quadrature;
 }
 
+
+
+template <int dim>
+double LaplaceKernelIntegration<dim>::nS(const Point<dim> &R) {
+    if(dim == 2)
+       return (-std::log(R.norm()) / numbers::PI);
+    else if(dim == 3)
+       return (1./(R.norm()*numbers::PI) );
+    else {
+       Assert(false, ExcInternalError());
+    }
+    return 0.;
+}
+       
+
+
+template <int dim>
+Point<dim> LaplaceKernelIntegration<dim>::nD(const Point<dim> &R) {
+    Point<dim> D(R);
+    if(dim == 2)
+       D /= -numbers::PI * R.square();
+    else if(dim == 3)
+       D /= -2*numbers::PI * R.square() * R.norm();
+    else {
+       Assert(false, ExcInternalError());
+    }
+    return D;
+}
+       
+
+
 template <>
 LaplaceKernelIntegration<3>::LaplaceKernelIntegration(FiniteElement<2,3> &fe)
 {
@@ -247,6 +302,7 @@ LaplaceKernelIntegration<3>::LaplaceKernelIntegration(FiniteElement<2,3> &fe)
     fe_values = new FEValues<2,3>(fe,quadrature,
                                  update_values | 
                                  update_jacobians |
+                                 update_cell_normal_vectors |
                                  update_quadrature_points );
 }
 
@@ -312,12 +368,25 @@ template <>
 void
 LaplaceKernelIntegration<3>::compute_SD_integral_on_cell(vector<vector<vector<double> > > &dstvv,
                                                         DoFHandler<2,3>::active_cell_iterator &cell,
-                                                        const vector<Point<3> > &q_points)
+                                                        const vector<Point<3> > &q_points, 
+                                                        const Function<3> &rhs)
 {
     fe_values->reinit(cell);
-    vector<Tensor<2,3> > jacobians = fe_values->get_jacobians();
-    vector<Point<3> > quad_points = fe_values->get_quadrature_points();
-
+    const vector<Tensor<2,3> > &jacobians = fe_values->get_jacobians();
+    const vector<Point<3> > &quad_points = fe_values->get_quadrature_points();
+    const vector<Point<3> > &normals = fe_values->get_cell_normal_vectors();
+    
+    static vector<Vector<double> > cell_wind
+       ( (*fe_values).n_quadrature_points, Vector<double>(3) );
+    static vector<double> normal_wind(quad_points.size());
+    
+    rhs.vector_value_list(quad_points, cell_wind);
+    
+    for(unsigned int q=0; q<quad_points.size(); ++q) {
+       normal_wind[q] = 0;
+       for(unsigned int d=0; d<3; ++d)
+           normal_wind[q] += normals[q][d] * cell_wind[q](d);
+    }
     Point<3> r,a1,a2,n,r_c,n_c;
     
     Assert(dstvv.size() == fe_values->dofs_per_cell,
@@ -348,7 +417,7 @@ LaplaceKernelIntegration<3>::compute_SD_integral_on_cell(vector<vector<vector<do
                a1 = jacobians[inner_q_point][0];
                a2 = jacobians[inner_q_point][1];
                n =  jacobians[inner_q_point][2];
-               i_S[inner_q_point]= term_S(r,a1,a2,n,rn_c) * fe_values->shape_value(i,inner_q_point);
+               i_S[inner_q_point]= term_S(r,a1,a2,n,rn_c) * normal_wind[inner_q_point];
                i_D[inner_q_point]= term_D(r,a1,a2) * fe_values->shape_value(i,inner_q_point);
            }
            dst[0] = (i_S[3]-i_S[1]-i_S[2]+i_S[0]);
@@ -410,39 +479,34 @@ void BEMProblem<dim>::assemble_system() {
     typename DoFHandler<dim-1,dim>::active_cell_iterator
        celli = dh.begin_active(),
        cellj = dh.begin_active(),
-       cellvi = dhv.begin_active(),
        endc = dh.end();
     
     // Outer quadrature rule. If we choose midpoint quadrature rule,
     // then this is a collocation method. If we choose any other
     // Quadrature rule, then this is Galerkin method.
-    Quadrature<dim-1> &quadrature_outer = *quadrature_pointer;
-    QMidpoint<dim-1> quadrature_mid;
-
+    Quadrature<dim-1> &outer_quadrature = *outer_quadrature_pointer;
+    Quadrature<dim-1> &inner_quadrature = *inner_quadrature_pointer;
     
-    FEValues<dim-1,dim> fe_outer(fe, quadrature_outer,
+    FEValues<dim-1,dim> fe_outer(fe, outer_quadrature,
                                 update_values |
                                 update_cell_normal_vectors |
-                                update_quadrature_points);
+                                update_quadrature_points |
+                                update_JxW_values);
     
-    FEValues<dim-1,dim> fe_inner(fe, quadrature_mid,
+    FEValues<dim-1,dim> fe_inner(fe, inner_quadrature,
                                 update_values |
                                 update_cell_normal_vectors |
-                                update_quadrature_points);
+                                update_quadrature_points |
+                                update_JxW_values);
     
     const unsigned int n_q_points_outer = fe_outer.n_quadrature_points;
     const unsigned int n_q_points_inner = fe_inner.n_quadrature_points;
     
     vector<unsigned int> dofs_i(fe.dofs_per_cell);
     vector<unsigned int> dofs_j(fe.dofs_per_cell);
-    vector<unsigned int> dofs_v_i(fev.dofs_per_cell);
-    
-    vector<vector<vector<double> > > single_double_layer_potentials
-       (fe.dofs_per_cell, vector<vector<double> >
-        (n_q_points_outer, vector<double> (2, 0.) ) ); 
 
-    vector<Vector<double> > cell_wind(n_q_points_inner, Vector<double>(dim) );
-    vector<double> normal_wind(n_q_points_inner);
+    vector<Vector<double> > inner_cell_wind(n_q_points_inner, Vector<double>(dim) );
+    double inner_normal_wind;
     
     Vector<double>     local_rhs(fe.dofs_per_cell);
     FullMatrix<double>  local_matrix(fe.dofs_per_cell, fe.dofs_per_cell);
@@ -450,28 +514,32 @@ void BEMProblem<dim>::assemble_system() {
     // The kernel.
     LaplaceKernelIntegration<dim> kernel(fe);
     
-    // i runs on outer integration, j runs on inner integration.
-    for(; celli != endc; ++celli, ++cellvi) {
+    vector<vector<vector<double> > > single_double_layer_potentials
+       (fe.dofs_per_cell, vector<vector<double> >
+        (n_q_points_outer, vector<double> (2, 0.) ) ); 
+    
+    Point<dim> R;
+
+    
+    // The index i runs on outer integration, while j runs on inner integration.
+    for(; celli != endc; ++celli) {
        fe_outer.reinit(celli);
        
        const vector<Point<dim> > &q_points_outer = fe_outer.get_quadrature_points();
        const vector<Point<dim> > &normals_outer = fe_outer.get_cell_normal_vectors();
 
        celli->get_dof_indices(dofs_i);
-       cellvi->get_dof_indices(dofs_v_i);
         
-       // Now the mass matrix and the single and double layer
-       // potentials. Notice that instead of integrating the single
-       // layer potential against the normal velocity, we integrate
-       // it against the average value of the velocity in the given
-       // cell.
-       //
-       // The reason for proceeding in this way is that in the
-       // current three-dimensional formulation we can only integrate
-       // the constants against the single layer potential. While
-       // this is certainly a rough approximation, it suffices for
-       // the purpose of this example.
        for(cellj = dh.begin_active(); cellj != endc; ++cellj) {
+
+           // If we are on the same cell, then the integrals we are
+           // performing are singular, and they require a special
+           // treatment, as explained in the introduction.
+           //
+           // In all other cases, standard Gauss quadrature rules can
+           // be used.
+           bool is_singular = (cellj->index() == celli->index());
+           
            local_rhs = 0;
            local_matrix = 0;
            
@@ -480,40 +548,73 @@ void BEMProblem<dim>::assemble_system() {
            
            const vector<Point<dim> > &q_points_inner = fe_inner.get_quadrature_points();
            const vector<Point<dim> > &normals_inner = fe_inner.get_cell_normal_vectors();
-           wind.vector_value_list(q_points_inner, cell_wind);
-           
-           
-           for(unsigned int q=0; q<n_q_points_inner; ++q) {
-               normal_wind[q] = 0;
-               for(unsigned int d=0; d<dim; ++d)
-                   normal_wind[q] += normals_inner[q][d] * cell_wind[q](d);
-           }
+           wind.vector_value_list(q_points_inner, inner_cell_wind);
            
-           kernel.compute_SD_integral_on_cell(single_double_layer_potentials, 
-                                              cellj, q_points_outer);
-           
-           for(unsigned int i=0; i<fe.dofs_per_cell; ++i) {
-               for(unsigned int j=0; j<fe.dofs_per_cell; ++j) {
-                   for(unsigned int qo=0; qo<n_q_points_outer; ++qo) {
-                       local_rhs(i) += ( - single_double_layer_potentials[j][qo][0]  * 
-                                         normal_wind[qo]                       *
-                                         fe_outer.shape_value(i,qo)           *
-                                         fe_outer.JxW(qo) );
+           if(is_singular == false) {
+               for(unsigned int q_inner=0; q_inner<n_q_points_inner; ++q_inner) {
+                   inner_normal_wind = 0;
+                   for(unsigned int d=0; d<dim; ++d) 
+                       inner_normal_wind += normals_inner[q_inner][d]*inner_cell_wind[q_inner](d);
+                   
+                   for(unsigned int q_outer=0; q_outer<n_q_points_outer; ++q_outer) {
+                   
+                       R = q_points_outer[q_outer]-q_points_inner[q_inner];
+                       
+                       for(unsigned int i=0; i<fe.dofs_per_cell; ++i) {
+                           local_rhs(i) += ( fe_outer.shape_value(i,q_outer)   *
+                                             fe_outer.JxW(q_outer)             *
+                                             //
+                                             kernel.nS(R)                      * 
+                                             inner_normal_wind                 *
+                                             fe_inner.JxW(q_inner) );
+                               
+                           for(unsigned int j=0; j<fe.dofs_per_cell; ++j) {
+                               
+                               local_matrix(i,j) += ( fe_outer.shape_value(i,q_outer)  *
+                                                      fe_outer.JxW(q_outer)            *
+                                                      //
+                                                      ( kernel.nD(R)                   * 
+                                                        normals_inner[q_inner] )       *
+                                                      fe_inner.shape_value(j,q_inner)  *
+                                                      fe_inner.JxW(q_inner)    );
+                           }
+                       }
+                   }
+               }
+           } else {
+               // Now we treat the more delicate case. If we are
+               // here, it means that the cell that runs on the j
+               // index and the one that runs on the i index are the
+               // same. In this case both the single and the double
+               // layer potential are singular, and they require a
+               // special treatment, as explained in the
+               // introduction. 
+
+               kernel.compute_SD_integral_on_cell(single_double_layer_potentials, 
+                                                  cellj, q_points_outer, wind);
+               
+               for(unsigned int i=0; i<fe.dofs_per_cell; ++i) {
+                   for(unsigned int q_outer=0; q_outer<n_q_points_outer; ++q_outer) {
+                       local_rhs(i) += ( - single_double_layer_potentials[0][q_outer][0]  * 
+                                         fe_outer.shape_value(i,q_outer)                  *
+                                         fe_outer.JxW(q_outer) );
                        
-                       if(celli->index() != cellj->index())
-                           local_matrix(i,j) += ( -single_double_layer_potentials[j][qo][1] * 
-                                                  fe_outer.shape_value(i,qo)                *
-                                                  fe_outer.JxW(qo) );
-                       // When the indices are the same, we assemble
-                       // also the mass matrix.
-                       if(celli->index() == cellj->index())
-                           local_matrix(i,j) += ( fe_outer.shape_value(i,qo)        * 
-                                                  fe_outer.shape_value(j,qo)        *
-                                                  fe_outer.JxW(qo) );
+                       for(unsigned int j=0; j<fe.dofs_per_cell; ++j) {
+                           
+                           // When the indices are the same, we
+                           // assemble also the mass matrix.
+                           local_matrix(i,j) += ( fe_outer.shape_value(i,q_outer)           * 
+                                                  fe_outer.shape_value(j,q_outer)           *
+                                                  fe_outer.JxW(q_outer) );
+                           
+                           local_matrix(i,j) += ( -single_double_layer_potentials[j][q_outer][1] * 
+                                                  fe_outer.shape_value(i,q_outer)                   *
+                                                  fe_outer.JxW(q_outer) );
+                       }
                    }
                }
            }
-           
+           // Move the local matrix and rhs to the global one.
            for(unsigned int i=0; i<fe.dofs_per_cell; ++i) {
                system_rhs(dofs_i[i]) += local_rhs(i);
                for(unsigned int j=0; j<fe.dofs_per_cell; ++j) 

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.