values(c) = SphereObstacle<dim>::value(p, c);
}
- // @sect4{The <code>BitmapFile</code> and <code>ChineseObstacle</code>
- // classes}
+ // @sect4{The <code>BitmapFile</code> and <code>ChineseObstacle</code> classes}
// The following two classes describe the obstacle outlined in the
// introduction, i.e., the Chinese character. The first of the two,
// a circle centered at the origin. Fortunately,
// GridGenerator::hyper_cube_with_cylindrical_hole already attaches a
// Manifold object to the interior boundary, so we do not need to do
- // anything but refine the mesh (see the @ref Results results section for a
+ // anything but refine the mesh (see the <a href="#Results">results section</a> for a
// fully worked example where we <em>do</em> attach a Manifold object).
triangulation.refine_global(2);
print_mesh_info(triangulation, "grid-3.eps");
// matrices from a product of 1D mass and Laplace matrices. Our first task
// is to compute the 1D matrices, which we do by first creating a 1D finite
// element. Instead of anticipating FE_DGQHermite<1> here, we get the finite
- // element's name from DoFHandler, replace the <dim> argument (2 or 3) by 1
+ // element's name from DoFHandler, replace the @p dim argument (2 or 3) by 1
// to create a 1D name, and construct the 1D element by using FETools.
template <int dim, int fe_degree, typename number>