}
+ // a 2d face in 3d space
+
// a 2d face in 3d space
template <int dim>
double
- measure(const dealii::TriaAccessor<2, dim, 3> &accessor)
+ measure(const TriaAccessor<2, dim, 3> &accessor)
{
- // In general the area can be computed as
- // the integral of the cross product of the two tangential vectors
-
- // If we assume a bilinear patch parametrized in u and v we get that
- // t_u = (v_1 - v_0) + v (v_3 - v_2 - v_1 + v_0)
- // t_v = (v_2 - v_0) + u (v_3 - v_2 - v_1 + v_0)
- // So t_u x t_v = (v_1 - v_0) x (v_2 - v_0) + u (v_1 - v_0) x (v_3 - v_2 -
- // v_1 + v_0) + v (v_3 - v_2 - v_1 + v_0) x (v_2 - v_0) t_u x t_v = w_1 + u
- // w_2 + v w_3 we can integrate the square norm (t_u x t_v) * (t_u x t_v) =
- // w_1*w_1 + u^2 w_2*w_2 + v^2 w_3*w_3 + 2u w_1*w_2 + 2v w_1*w_3 + 2uv
- // w_2*w_3 in u and v getting (between zero and one) w_1*w_1 + 1/3 w_2*w_2 +
- // 1/3 w_3*w_3 + w_1*w_2 + w_1*w_3 + 1/2 w_2*w_3
-
- const Tensor<1, 3> w_1 =
- cross_product_3d(accessor.vertex(1) - accessor.vertex(0),
- accessor.vertex(2) - accessor.vertex(0));
- const Tensor<1, 3> w_2 =
- cross_product_3d(accessor.vertex(1) - accessor.vertex(0),
- accessor.vertex(3) - accessor.vertex(2) -
- accessor.vertex(1) + accessor.vertex(0));
- const Tensor<1, 3> w_3 =
- cross_product_3d(accessor.vertex(3) - accessor.vertex(2) -
- accessor.vertex(1) + accessor.vertex(0),
- accessor.vertex(2) - accessor.vertex(0));
-
-
- return std::sqrt(scalar_product(w_1, w_1) + scalar_product(w_1, w_2) +
- scalar_product(w_1, w_3) + 0.5 * scalar_product(w_2, w_3) +
- 1. / 3 * scalar_product(w_2, w_2) +
- 1. / 3 * scalar_product(w_3, w_3));
+ // If the face is planar, the diagonal from vertex 0 to vertex 3,
+ // v_03, should be in the plane P_012 of vertices 0, 1 and 2. Get
+ // the normal vector of P_012 and test if v_03 is orthogonal to
+ // that. If so, the face is planar and computing its area is simple.
+ const Tensor<1, 3> v01 = accessor.vertex(1) - accessor.vertex(0);
+ const Tensor<1, 3> v02 = accessor.vertex(2) - accessor.vertex(0);
+
+ const Tensor<1, 3> normal = cross_product_3d(v01, v02);
+
+ const Tensor<1, 3> v03 = accessor.vertex(3) - accessor.vertex(0);
+
+ // check whether v03 does not lie in the plane of v01 and v02
+ // (i.e., whether the face is not planar). we do so by checking
+ // whether the triple product (v01 x v02) * v03 forms a positive
+ // volume relative to |v01|*|v02|*|v03|. the test checks the
+ // squares of these to avoid taking norms/square roots:
+ if (std::abs((v03 * normal) * (v03 * normal) /
+ ((v03 * v03) * (v01 * v01) * (v02 * v02))) >= 1e-24)
+ {
+ // If the vectors are non planar we integrate the norm of the normal
+ // vector using a numerical Gauss scheme of order 4.
+ const Tensor<1, 3> w_1 =
+ cross_product_3d(accessor.vertex(1) - accessor.vertex(0),
+ accessor.vertex(2) - accessor.vertex(0));
+ const Tensor<1, 3> w_2 =
+ cross_product_3d(accessor.vertex(1) - accessor.vertex(0),
+ accessor.vertex(3) - accessor.vertex(2) -
+ accessor.vertex(1) + accessor.vertex(0));
+ const Tensor<1, 3> w_3 =
+ cross_product_3d(accessor.vertex(3) - accessor.vertex(2) -
+ accessor.vertex(1) + accessor.vertex(0),
+ accessor.vertex(2) - accessor.vertex(0));
+
+ double a = scalar_product(w_1, w_1);
+ double b = scalar_product(w_2, w_2);
+ double c = scalar_product(w_3, w_3);
+ double d = scalar_product(w_1, w_2);
+ double e = scalar_product(w_1, w_3);
+ double f = scalar_product(w_2, w_3);
+
+ return 0.03025074832140047 *
+ std::sqrt(a + 0.0048207809894260144 * b +
+ 0.0048207809894260144 * c + 0.13886368840594743 * d +
+ 0.13886368840594743 * e +
+ 0.0096415619788520288 * f) +
+ 0.056712962962962937 *
+ std::sqrt(a + 0.0048207809894260144 * b +
+ 0.10890625570683385 * c + 0.13886368840594743 * d +
+ 0.66001895641514374 * e + 0.045826333352825557 * f) +
+ 0.056712962962962937 *
+ std::sqrt(a + 0.0048207809894260144 * b +
+ 0.44888729929169013 * c + 0.13886368840594743 * d +
+ 1.3399810435848563 * e + 0.09303735505312187 * f) +
+ 0.03025074832140047 *
+ std::sqrt(a + 0.0048207809894260144 * b +
+ 0.86595709258347853 * c + 0.13886368840594743 * d +
+ 1.8611363115940525 * e + 0.12922212642709538 * f) +
+ 0.056712962962962937 *
+ std::sqrt(a + 0.10890625570683385 * b +
+ 0.0048207809894260144 * c + 0.66001895641514374 * d +
+ 0.13886368840594743 * e + 0.045826333352825557 * f) +
+ 0.10632332575267359 *
+ std::sqrt(a + 0.10890625570683385 * b +
+ 0.10890625570683385 * c + 0.66001895641514374 * d +
+ 0.66001895641514374 * e + 0.2178125114136677 * f) +
+ 0.10632332575267359 *
+ std::sqrt(a + 0.10890625570683385 * b +
+ 0.44888729929169013 * c + 0.66001895641514374 * d +
+ 1.3399810435848563 * e + 0.44220644500147605 * f) +
+ 0.056712962962962937 *
+ std::sqrt(a + 0.10890625570683385 * b +
+ 0.86595709258347853 * c + 0.66001895641514374 * d +
+ 1.8611363115940525 * e + 0.61419262306231814 * f) +
+ 0.056712962962962937 *
+ std::sqrt(a + 0.44888729929169013 * b +
+ 0.0048207809894260144 * c + 1.3399810435848563 * d +
+ 0.13886368840594743 * e + 0.09303735505312187 * f) +
+ 0.10632332575267359 *
+ std::sqrt(a + 0.44888729929169013 * b +
+ 0.10890625570683385 * c + 1.3399810435848563 * d +
+ 0.66001895641514374 * e + 0.44220644500147605 * f) +
+ 0.10632332575267359 *
+ std::sqrt(a + 0.44888729929169013 * b +
+ 0.44888729929169013 * c + 1.3399810435848563 * d +
+ 1.3399810435848563 * e + 0.89777459858338027 * f) +
+ 0.056712962962962937 *
+ std::sqrt(a + 0.44888729929169013 * b +
+ 0.86595709258347853 * c + 1.3399810435848563 * d +
+ 1.8611363115940525 * e + 1.2469436885317342 * f) +
+ 0.03025074832140047 *
+ std::sqrt(a + 0.86595709258347853 * b +
+ 0.0048207809894260144 * c + 1.8611363115940525 * d +
+ 0.13886368840594743 * e + 0.12922212642709538 * f) +
+ 0.056712962962962937 *
+ std::sqrt(a + 0.86595709258347853 * b +
+ 0.10890625570683385 * c + 1.8611363115940525 * d +
+ 0.66001895641514374 * e + 0.61419262306231814 * f) +
+ 0.056712962962962937 *
+ std::sqrt(a + 0.86595709258347853 * b +
+ 0.44888729929169013 * c + 1.8611363115940525 * d +
+ 1.3399810435848563 * e + 1.2469436885317342 * f) +
+ 0.03025074832140047 *
+ std::sqrt(a + 0.86595709258347853 * b +
+ 0.86595709258347853 * c + 1.8611363115940525 * d +
+ 1.8611363115940525 * e + 1.7319141851669571 * f);
+ }
+
+ // the face is planar. then its area is 1/2 of the norm of the
+ // cross product of the two diagonals
+ const Tensor<1, 3> v12 = accessor.vertex(2) - accessor.vertex(1);
+ const Tensor<1, 3> twice_area = cross_product_3d(v03, v12);
+ return 0.5 * twice_area.norm();
}
std::vector<CellData<2>> cells;
SubCellData subcelldata;
- double tol = 1e-15;
- vertices.push_back(Point<3>{10, 56, 0});
- vertices.push_back(Point<3>{22, 1, 0});
- vertices.push_back(Point<3>{15, 44, 0});
+ double tol = 1e-12;
+ // vertices.push_back(Point<3>{10, 56, 0});
+ // vertices.push_back(Point<3>{22, 1, 0});
+ // vertices.push_back(Point<3>{15, 44, 0});
+ // vertices.push_back(Point<3>{1, 1, 1});
+ vertices.push_back(Point<3>{0, 0, 1});
+ vertices.push_back(Point<3>{1, 0, -10});
+ vertices.push_back(Point<3>{0, 1, -1});
vertices.push_back(Point<3>{1, 1, 1});
cells.resize(1);
DoFHandler<2, 3> dof_handler(tria);
dof_handler.distribute_dofs(fe);
- QGauss<2> quadrature_formula(1);
+ QGauss<2> quadrature_formula(4);
MappingQ1<2, 3> mapping;
FEValues<2, 3> fe_values(mapping, fe, quadrature_formula, update_JxW_values);
main()
{
initlog();
- deallog << std::setprecision(5);
+ deallog << std::setprecision(8);
test();