* phi.quadrature_point(q_index);
* // Need to evaluate function for each component in VectorizedArray
* VectorizedArray<double> f_value;
- * for (unsigned int v=0; v<VectorizedArray<double>::n_array_elements;
- * ++v)
+ * for (unsigned int v=0;
+ * v<VectorizedArray<double>::n_array_elements;
+ * ++v)
* {
* Point<dim> p;
* for (unsigned int d=0; d<dim; ++d)
* {
* const unsigned int n_items =
* i+VectorizedArray<double>::n_array_elements > dofs_per_cell ?
- * (dofs_per_cell - i) : VectorizedArray<double>::n_array_elements;
+ * (dofs_per_cell - i) :
+ * VectorizedArray<double>::n_array_elements;
*
* // Set n_items unit vectors
* for (unsigned int j=0; j<dofs_per_cell; ++j)
* VectorizedArray@<double@> a tensor is returned,
*
* @code
- * get_value -> Tensor<1,n_components,VectorizedArray<double> >
- * get_gradient -> Tensor<1,n_components,Tensor<1,dim,VectorizedArray<double> >
- * >
+ * get_value -> Tensor<1,n_components,VectorizedArray<double>>
+ * get_gradient -> Tensor<1,n_components,Tensor<1,dim,VectorizedArray<double>>
* @endcode
*
* In a similar vein, the submit_value() and submit_gradient() calls take
* matrix_free_inhomogeneous.reinit(dof_handler, constraints_no_dirichlet,
* quadrature, additional_data);
* operator_inhomogeneous.initialize(matrix_free_inhomogeneous,
- * selected_blocks); LinearAlgebra::distributed::Vector<double> inhomogeneity;
+ * selected_blocks);
+ * LinearAlgebra::distributed::Vector<double> inhomogeneity;
* matrix_free_inhomogeneous.initialize_dof_vector(inhomogeneity);
* constraints_with_dirichlet.distribute(inhomogeneity);
* operator_inhomogeneous.vmult(system_rhs, inhomogeneity);
* fe_eval.reinit(cell);
* for (unsigned int q=0; q<n_q_points; ++q)
* (*coefficient)(cell,q) =
- * function.value(fe_eval.quadrature_point(q));
+ * function.value(fe_eval.quadrature_point(q));
* }
* }
* @endcode