]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Implement serialization. Clean up change between product form and standard form:...
authorMartin Kronbichler <kronbichler@lnm.mw.tum.de>
Wed, 27 Jul 2011 14:10:41 +0000 (14:10 +0000)
committerMartin Kronbichler <kronbichler@lnm.mw.tum.de>
Wed, 27 Jul 2011 14:10:41 +0000 (14:10 +0000)
git-svn-id: https://svn.dealii.org/trunk@23974 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/include/deal.II/base/polynomial.h
deal.II/source/base/polynomial.cc

index d0d56dc49300190f81cb3cf332379b03e44a3076..82e822761610726584796df1dd9e8dc59baea72a 100644 (file)
@@ -252,6 +252,15 @@ namespace Polynomials
       static void multiply (std::vector<number>& coefficients,
                             const number factor);
 
+                                      /**
+                                       * Transforms polynomial form of
+                                       * product of linear factors into
+                                       * standard form, $\sum_i a_i
+                                       * x^i$. Deletes all data structures
+                                       * related to the product form.
+                                       */
+      void transform_into_standard_form ();
+
                                        /**
                                         * Coefficients of the polynomial
                                         * $\sum_i a_i x^i$. This vector
@@ -266,29 +275,29 @@ namespace Polynomials
                                         */
       std::vector<number> coefficients;
 
-                               /**
-                                * Stores whether the polynomial is in
-                                * Lagrange product form, i.e., constructed as a
-                                * product (x-x_0)*(x-x_1)*...*(x-x_n)/weight,
-                                * or not.
-                                */
-    bool in_lagrange_product_form;
-
-                               /**
-                                * If the polynomial is in Lagrange product
-                                * form, i.e., constructed as a product
-                                * (x-x_0)*(x-x_1)*...*(x-x_n)/weight, store
-                                * the shifts x_i
-                                */
-    std::vector<number> lagrange_support_points;
-
-                               /**
-                                * If the polynomial is in Lagrange product
-                                * form, i.e., constructed as a product
-                                * (x-x_0)*(x-x_1)*...*(x-x_n)/weight, store
-                                * the weight
-                                */
-    number lagrange_weight;
+                                      /**
+                                       * Stores whether the polynomial is in
+                                       * Lagrange product form, i.e.,
+                                       * constructed as a product $(x-x_0)
+                                       * (x-x_1) \ldots (x-x_n)/c$, or not.
+                                       */
+      bool in_lagrange_product_form;
+
+                                      /**
+                                       * If the polynomial is in Lagrange
+                                       * product form, i.e., constructed as a
+                                       * product $(x-x_0) (x-x_1) \ldots
+                                       * (x-x_n)/c$, store the shifts $x_i$.
+                                       */
+      std::vector<number> lagrange_support_points;
+
+                                      /**
+                                       * If the polynomial is in Lagrange
+                                       * product form, i.e., constructed as a
+                                       * product $(x-x_0) (x-x_1) \ldots
+                                       * (x-x_n)/c$, store the weight c.
+                                       */
+      number lagrange_weight;
   };
 
 
@@ -681,13 +690,22 @@ namespace Polynomials
     lagrange_weight          (1.)
   {}
 
+
+
   template <typename number>
   inline
   unsigned int
   Polynomial<number>::degree () const
   {
-    Assert (coefficients.size()>0, ExcEmptyObject());
-    return coefficients.size() - 1;
+    if (in_lagrange_product_form == true)
+      {
+       return lagrange_support_points.size();
+      }
+    else
+      {
+       Assert (coefficients.size()>0, ExcEmptyObject());
+       return coefficients.size() - 1;
+      }
   }
 
 
@@ -697,10 +715,10 @@ namespace Polynomials
   number
   Polynomial<number>::value (const number x) const
   {
-    Assert (coefficients.size() > 0, ExcEmptyObject());
-
     if (in_lagrange_product_form == false)
       {
+       Assert (coefficients.size() > 0, ExcEmptyObject());
+
                                      // Horner scheme
        const unsigned int m=coefficients.size();
        number value = coefficients.back();
@@ -732,11 +750,9 @@ namespace Polynomials
                                      // function in the base class.
     ar & static_cast<Subscriptor &>(*this);
     ar & coefficients;
-                               // TODO: adjust tests for including these
-                               // fields
-    //ar & in_lagrange_product_form;
-    //ar & lagrange_support_points;
-    //ar & lagrange_weight;
+    ar & in_lagrange_product_form;
+    ar & lagrange_support_points;
+    ar & lagrange_weight;
   }
 
 }
index a2557639f32cd8fe53904adfa6d0387a0071401b..2fb0cfd957f0424f0aa37b58fc34fa272a316f38 100644 (file)
@@ -70,9 +70,10 @@ namespace Polynomials
                   :
                   in_lagrange_product_form (true)
   {
-    Assert (supp.size(), ExcEmptyObject());
-    lagrange_support_points.reserve (supp.size()-1);
+    Assert (supp.size()>0, ExcEmptyObject());
     AssertIndexRange (center, supp.size());
+
+    lagrange_support_points.reserve (supp.size()-1);
     number tmp_lagrange_weight = 1.;
     for (unsigned int i=0; i<supp.size(); ++i)
       if (i!=center)
@@ -80,35 +81,13 @@ namespace Polynomials
          lagrange_support_points.push_back(supp[i](0));
          tmp_lagrange_weight *= supp[center](0) - supp[i](0);
        }
+
+                               // check for underflow and overflow
     Assert (std::fabs(tmp_lagrange_weight) > std::numeric_limits<number>::min(),
            ExcMessage ("Underflow in computation of Lagrange denominator."));
     Assert (std::fabs(tmp_lagrange_weight) < std::numeric_limits<number>::max(),
            ExcMessage ("Overflow in computation of Lagrange denominator."));
     lagrange_weight = 1./tmp_lagrange_weight;
-
-                               // also hold coefficients since we might
-                               // perform some operations (like
-                               // multiplication by another polynomial) that
-                               // are difficult to do based on the product
-                               // form only
-    coefficients.resize (lagrange_support_points.size()+1);
-    if (supp.size() == 1)
-      coefficients[0] = 1.;
-    else
-      {
-       coefficients[0] = -lagrange_support_points[0];
-       coefficients[1] = 1.;
-       for (unsigned int i=1; i<lagrange_support_points.size(); ++i)
-         {
-           coefficients[i+1] = 1.;
-           for (unsigned int j=i; j>0; --j)
-             coefficients[j] = (-lagrange_support_points[i]*coefficients[j] +
-                                coefficients[j-1]);
-           coefficients[0] *= -lagrange_support_points[i];
-         }
-      }
-    for (unsigned int i=0; i<lagrange_support_points.size()+1; ++i)
-      coefficients[i] *= lagrange_weight;
   }
 
 
@@ -118,7 +97,6 @@ namespace Polynomials
   Polynomial<number>::value (const number         x,
                              std::vector<number> &values) const
   {
-    Assert (coefficients.size() > 0, ExcEmptyObject());
     Assert (values.size() > 0, ExcZero());
     const unsigned int values_size=values.size();
 
@@ -203,6 +181,8 @@ namespace Polynomials
        return;
       }
 
+    Assert (coefficients.size() > 0, ExcEmptyObject());
+
                                      // if we only need the value, then
                                      // call the other function since
                                      // that is significantly faster
@@ -247,6 +227,45 @@ namespace Polynomials
 
 
 
+  template <typename number>
+  void
+  Polynomial<number>::transform_into_standard_form ()
+  {
+                               // should only be called when the product form
+                               // is active
+    Assert (in_lagrange_product_form == true, ExcInternalError());
+    Assert (coefficients.size() == 0, ExcInternalError());
+
+                               // compute coefficients by expanding the
+                               // product (x-x_i) term by term
+    coefficients.resize (lagrange_support_points.size()+1);
+    if (lagrange_support_points.size() == 0)
+      coefficients[0] = 1.;
+    else
+      {
+       coefficients[0] = -lagrange_support_points[0];
+       coefficients[1] = 1.;
+       for (unsigned int i=1; i<lagrange_support_points.size(); ++i)
+         {
+           coefficients[i+1] = 1.;
+           for (unsigned int j=i; j>0; --j)
+             coefficients[j] = (-lagrange_support_points[i]*coefficients[j] +
+                                coefficients[j-1]);
+           coefficients[0] *= -lagrange_support_points[i];
+         }
+      }
+    for (unsigned int i=0; i<lagrange_support_points.size()+1; ++i)
+      coefficients[i] *= lagrange_weight;
+
+                               // delete the product form data
+    std::vector<number> new_points;
+    lagrange_support_points.swap(new_points);
+    in_lagrange_product_form = false;
+    lagrange_weight = 1.;
+  }
+
+
+
   template <typename number>
   void
   Polynomial<number>::scale (std::vector<number> &coefficients,
@@ -281,6 +300,7 @@ namespace Polynomials
          }
        lagrange_weight *= accumulated_fact;
       }
+                               // otherwise, use the function above
     else
       scale (coefficients, factor);
   }
@@ -304,14 +324,13 @@ namespace Polynomials
   Polynomial<number>::operator *= (const double s)
   {
     if (in_lagrange_product_form == true)
+      lagrange_weight *= s;
+    else
       {
-       lagrange_weight *= s;
-       return *this;
+       for (typename std::vector<number>::iterator c = coefficients.begin();
+            c != coefficients.end(); ++c)
+         *c *= s;
       }
-
-    for (typename std::vector<number>::iterator c = coefficients.begin();
-         c != coefficients.end(); ++c)
-      *c *= s;
     return *this;
   }
 
@@ -329,25 +348,34 @@ namespace Polynomials
        lagrange_support_points.insert (lagrange_support_points.end(),
                                        p.lagrange_support_points.begin(),
                                        p.lagrange_support_points.end());
-       return *this;
       }
 
-                               // cannot retain Lagrange basis, recompute...
-    if (in_lagrange_product_form == true)
+                               // cannot retain product form, recompute...
+    else if (in_lagrange_product_form == true)
+      transform_into_standard_form();
+
+                               // need to transform p into standard form as
+                               // well if necessary. copy the polynomial to
+                               // do this
+    std_cxx1x::shared_ptr<Polynomial<number> > q_data;
+    const Polynomial<number> * q = 0;
+    if (p.in_lagrange_product_form == true)
       {
-       in_lagrange_product_form = false;
-       lagrange_support_points.clear();
-       lagrange_weight = 1.;
+       q_data.reset (new Polynomial<number>(p));
+       q_data->transform_into_standard_form();
+       q = q_data.get();
       }
+    else
+      q = &p;
 
                                      // Degree of the product
-    unsigned int new_degree = this->degree() + p.degree();
+    unsigned int new_degree = this->degree() + q->degree();
 
     std::vector<number> new_coefficients(new_degree+1, 0.);
 
-    for (unsigned int i=0; i<p.coefficients.size(); ++i)
+    for (unsigned int i=0; i<q->coefficients.size(); ++i)
       for (unsigned int j=0; j<this->coefficients.size(); ++j)
-       new_coefficients[i+j] += this->coefficients[j]*p.coefficients[i];
+       new_coefficients[i+j] += this->coefficients[j]*q->coefficients[i];
     this->coefficients = new_coefficients;
 
     return *this;
@@ -360,21 +388,37 @@ namespace Polynomials
   Polynomial<number>::operator += (const Polynomial<number>& p)
   {
                                // Lagrange product form cannot reasonably be
-                               // retained after polynomial addition
+                               // retained after polynomial addition. we
+                               // could in theory check if either this
+                               // polynomial or the other is a zero
+                               // polynomial and retain it, but we actually
+                               // currently (r23974) assume that the addition
+                               // of a zero polynomial changes the state and
+                               // tests equivalence.
     if (in_lagrange_product_form == true)
+      transform_into_standard_form();
+
+                               // need to transform p into standard form as
+                               // well if necessary. copy the polynomial to
+                               // do this
+    std_cxx1x::shared_ptr<Polynomial<number> > q_data;
+    const Polynomial<number> * q = 0;
+    if (p.in_lagrange_product_form == true)
       {
-       in_lagrange_product_form = false;
-       lagrange_support_points.clear();
-       lagrange_weight = 1.;
+       q_data.reset (new Polynomial<number>(p));
+       q_data->transform_into_standard_form();
+       q = q_data.get();
       }
+    else
+      q = &p;
 
                                      // if necessary expand the number
                                      // of coefficients we store
-    if (p.coefficients.size() > coefficients.size())
-      coefficients.resize (p.coefficients.size(), 0.);
+    if (q->coefficients.size() > coefficients.size())
+      coefficients.resize (q->coefficients.size(), 0.);
 
-    for (unsigned int i=0; i<p.coefficients.size(); ++i)
-      coefficients[i] += p.coefficients[i];
+    for (unsigned int i=0; i<q->coefficients.size(); ++i)
+      coefficients[i] += q->coefficients[i];
 
     return *this;
   }
@@ -386,21 +430,31 @@ namespace Polynomials
   Polynomial<number>::operator -= (const Polynomial<number>& p)
   {
                                // Lagrange product form cannot reasonably be
-                               // retained after polynomial subtraction
+                               // retained after polynomial addition
     if (in_lagrange_product_form == true)
+      transform_into_standard_form();
+
+                               // need to transform p into standard form as
+                               // well if necessary. copy the polynomial to
+                               // do this
+    std_cxx1x::shared_ptr<Polynomial<number> > q_data;
+    const Polynomial<number> * q = 0;
+    if (p.in_lagrange_product_form == true)
       {
-       in_lagrange_product_form = false;
-       lagrange_support_points.clear();
-       lagrange_weight = 1.;
+       q_data.reset (new Polynomial<number>(p));
+       q_data->transform_into_standard_form();
+       q = q_data.get();
       }
+    else
+      q = &p;
 
                                      // if necessary expand the number
                                      // of coefficients we store
-    if (p.coefficients.size() > coefficients.size())
-      coefficients.resize (p.coefficients.size(), 0.);
+    if (q->coefficients.size() > coefficients.size())
+      coefficients.resize (q->coefficients.size(), 0.);
 
-    for (unsigned int i=0; i<p.coefficients.size(); ++i)
-      coefficients[i] -= p.coefficients[i];
+    for (unsigned int i=0; i<q->coefficients.size(); ++i)
+      coefficients[i] -= q->coefficients[i];
 
     return *this;
   }
@@ -411,7 +465,29 @@ namespace Polynomials
   bool
   Polynomial<number>::operator == (const Polynomial<number> & p)  const
   {
-    return (p.coefficients == coefficients);
+                               // need to distinguish a few cases based on
+                               // whether we are in product form or not. two
+                               // polynomials can still be the same when they
+                               // are on different forms, but the expansion
+                               // is the same
+    if (in_lagrange_product_form == true &&
+       p.in_lagrange_product_form == true)
+      return ((lagrange_weight == p.lagrange_weight) &&
+             (lagrange_support_points == p.lagrange_support_points));
+    else if (in_lagrange_product_form == true)
+      {
+       Polynomial<number> q = *this;
+       q.transform_into_standard_form();
+       return (q.coefficients == p.coefficients);
+      }
+    else if (p.in_lagrange_product_form == true)
+      {
+       Polynomial<number> q = p;
+       q.transform_into_standard_form();
+       return (q.coefficients == coefficients);
+      }
+    else
+      return (p.coefficients == coefficients);
   }
 
 
@@ -434,6 +510,11 @@ namespace Polynomials
                                      // actually unreachable
     coefficients[0] = offset;
 #else
+
+                               // too many coefficients cause overflow in
+                               // the binomial coefficient used below
+    Assert (coefficients.size() < 31, ExcNotImplemented());
+
                                      // Copy coefficients to a vector of
                                      // accuracy given by the argument
     std::vector<number2> new_coefficients(coefficients.begin(),
@@ -502,6 +583,7 @@ namespace Polynomials
          lagrange_support_points[i] -= offset;
       }
     else
+                               // do the shift in any case
       shift (coefficients, offset);
   }
 
@@ -516,9 +598,20 @@ namespace Polynomials
     if (degree() == 0)
       return Monomial<number>(0, 0.);
 
-    std::vector<number> newcoefficients (coefficients.size()-1);
-    for (unsigned int i=1 ; i<coefficients.size() ; ++i)
-      newcoefficients[i-1] = i * coefficients[i];
+    std_cxx1x::shared_ptr<Polynomial<number> > q_data;
+    const Polynomial<number> * q = 0;
+    if (in_lagrange_product_form == true)
+      {
+       q_data.reset (new Polynomial<number>(*this));
+       q_data->transform_into_standard_form();
+       q = q_data.get();
+      }
+    else
+      q = this;
+
+    std::vector<number> newcoefficients (q->coefficients.size()-1);
+    for (unsigned int i=1 ; i<q->coefficients.size() ; ++i)
+      newcoefficients[i-1] = i * q->coefficients[i];
 
     return Polynomial<number> (newcoefficients);
   }
@@ -531,10 +624,21 @@ namespace Polynomials
   {
                                // no simple form possible for Lagrange
                                // polynomial on product form
-    std::vector<number> newcoefficients (coefficients.size()+1);
+    std_cxx1x::shared_ptr<Polynomial<number> > q_data;
+    const Polynomial<number> * q = 0;
+    if (in_lagrange_product_form == true)
+      {
+       q_data.reset (new Polynomial<number>(*this));
+       q_data->transform_into_standard_form();
+       q = q_data.get();
+      }
+    else
+      q = this;
+
+    std::vector<number> newcoefficients (q->coefficients.size()+1);
     newcoefficients[0] = 0.;
-    for (unsigned int i=0 ; i<coefficients.size() ; ++i)
-      newcoefficients[i+1] = coefficients[i]/(i+1.);
+    for (unsigned int i=0 ; i<q->coefficients.size() ; ++i)
+      newcoefficients[i+1] = q->coefficients[i]/(i+1.);
 
     return Polynomial<number> (newcoefficients);
   }
@@ -553,6 +657,7 @@ namespace Polynomials
   }
 
 
+
 // ------------------ class Monomial -------------------------- //
 
   template <typename number>
@@ -585,6 +690,9 @@ namespace Polynomials
       v.push_back (Monomial<number>(i));
     return v;
   }
+
+
+
 // ------------------ class LagrangeEquidistant --------------- //
 
   namespace internal
@@ -592,7 +700,7 @@ namespace Polynomials
     namespace LagrangeEquidistant
     {
       std::vector<Point<1> >
-      generate_unit_points (const unsigned int n)
+      generate_equidistant_unit_points (const unsigned int n)
       {
        std::vector<Point<1> > points (n+1);
        const double one_over_n = 1./n;
@@ -609,9 +717,11 @@ namespace Polynomials
                                             const unsigned int support_point)
     :
     Polynomial<double> (internal::LagrangeEquidistant::
-                       generate_unit_points (n),
+                       generate_equidistant_unit_points (n),
                        support_point)
   {
+    Assert (coefficients.size() == 0, ExcInternalError());
+
                                // For polynomial order up to 3, we have
                                // precomputed weights. Use these weights
                                // instead of the product form
@@ -619,13 +729,15 @@ namespace Polynomials
       {
        this->in_lagrange_product_form = false;
        this->lagrange_weight = 1.;
-       this->lagrange_support_points.clear();
-       Assert (this->coefficients.size() == n+1, ExcInternalError());
+       std::vector<double> new_support_points;
+       this->lagrange_support_points.swap(new_support_points);
+       this->coefficients.resize (n+1);
         compute_coefficients(n, support_point, this->coefficients);
       }
   }
 
 
+
   void
   LagrangeEquidistant::compute_coefficients (const unsigned int n,
                                              const unsigned int support_point,
@@ -683,6 +795,7 @@ namespace Polynomials
   }
 
 
+
   std::vector<Polynomial<double> >
   LagrangeEquidistant::
   generate_complete_basis (const unsigned int degree)
@@ -691,7 +804,7 @@ namespace Polynomials
                                        // create constant polynomial
       return std::vector<Polynomial<double> >
         (1, Polynomial<double> (std::vector<double> (1,1.)));
-    else if (degree < 4)
+    else
       {
                                          // create array of Lagrange
                                          // polynomials
@@ -700,24 +813,10 @@ namespace Polynomials
           v.push_back(LagrangeEquidistant(degree,i));
         return v;
       }
-    else
-      {
-                               // create polynomial as product of (x-x_i),
-                               // which avoids cancellation
-       std::vector<Polynomial<double> > p;
-       p.reserve (degree+1);
-       std::vector<Point<1> > points (degree+1);
-       const double one_over_degree = 1./degree;
-        for (unsigned int k=0;k<=degree;++k)
-         points[k](0) = static_cast<double>(k)*one_over_degree;
-
-       for (unsigned int k=0; k<=degree; ++k)
-         p.push_back (Polynomial<double> (points, k));
-       return p;
-      }
   }
 
 
+
 //----------------------------------------------------------------------//
 
 
@@ -733,6 +832,7 @@ namespace Polynomials
   }
 
 
+
 // ------------------ class Legendre --------------- //
 
 
@@ -922,6 +1022,7 @@ namespace Polynomials
   }
 
 
+
 // ------------------ class Lobatto -------------------- //
 
 
@@ -998,9 +1099,10 @@ std::vector<Polynomial<double> > Lobatto::generate_complete_basis (const unsigne
    return basis;
 }
 
-// ------------------ class Hierarchical --------------- //
 
 
+// ------------------ class Hierarchical --------------- //
+
 
 // Reserve space for polynomials up to degree 19. Should be sufficient
 // for the start.

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.