// <code>run()</code> function further below. (The default value of
// boundary indicators is <code>0</code>, so faces can only have an
// indicator equal to <code>1</code> if we have explicitly set it.)
- for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
- if (cell->face(face)->at_boundary()
+ for (unsigned int face_number=0; face_number<GeometryInfo<dim>::faces_per_cell; ++face_number)
+ if (cell->face(face_number)->at_boundary()
&&
- (cell->face(face)->boundary_indicator() == 1))
+ (cell->face(face_number)->boundary_indicator() == 1))
{
// If we came into here, then we have found an external face
// belonging to Gamma2. Next, we have to compute the values of
// need for the computation of the contour integral. This is
// done using the <code>reinit</code> function which we already
// know from the FEValue class:
- fe_face_values.reinit (cell, face);
+ fe_face_values.reinit (cell, face_number);
// And we can then perform the integration by using a loop over
// all quadrature points.
cell = triangulation.begin (),
endc = triangulation.end();
for (; cell!=endc; ++cell)
- for (unsigned int face=0;
- face<GeometryInfo<dim>::faces_per_cell;
- ++face)
- if ((std::fabs(cell->face(face)->center()(0) - (-1)) < 1e-12)
+ for (unsigned int face_number=0;
+ face_number<GeometryInfo<dim>::faces_per_cell;
+ ++face_number)
+ if ((std::fabs(cell->face(face_number)->center()(0) - (-1)) < 1e-12)
||
- (std::fabs(cell->face(face)->center()(1) - (-1)) < 1e-12))
- cell->face(face)->set_boundary_indicator (1);
+ (std::fabs(cell->face(face_number)->center()(1) - (-1)) < 1e-12))
+ cell->face(face_number)->set_boundary_indicator (1);
}
else
refine_grid ();