local_history_values_at_qpoints (dim, std::vector< Vector<double> >(dim)),
local_history_fe_values (dim, std::vector< Vector<double> >(dim));
- for (unsigned int i=0; i<dim; i++)
- for (unsigned int j=0; j<dim; j++)
+ for (unsigned int i=0; i<dim; ++i)
+ for (unsigned int j=0; j<dim; ++j)
{
history_field[i][j].reinit(history_dof_handler.n_dofs());
local_history_values_at_qpoints[i][j].reinit(quadrature.size());
Assert (local_quadrature_points_history < &quadrature_point_history.back(),
ExcInternalError());
- for (unsigned int i=0; i<dim; i++)
- for (unsigned int j=0; j<dim; j++)
+ for (unsigned int i=0; i<dim; ++i)
+ for (unsigned int j=0; j<dim; ++j)
{
for (unsigned int q=0; q<quadrature.size(); ++q)
local_history_values_at_qpoints[i][j](q)
Assert (local_quadrature_points_history < &quadrature_point_history.back(),
ExcInternalError());
- for (unsigned int i=0; i<dim; i++)
- for (unsigned int j=0; j<dim; j++)
+ for (unsigned int i=0; i<dim; ++i)
+ for (unsigned int j=0; j<dim; ++j)
{
dg_cell->get_dof_values (history_field[i][j],
local_history_fe_values[i][j]);
// should return the <i>square</i> of the absolute value --
// thereby not satisfying the properties mathematicians require of
// something called a "norm".)
- for (unsigned int i = 0; i < computed_quantities.size(); i++)
+ for (unsigned int i = 0; i < computed_quantities.size(); ++i)
{
Assert(computed_quantities[i].size() == 1,
ExcDimensionMismatch(computed_quantities[i].size(), 1));
const Vector<double> &boundary_values,
const DataVector & Wminus)
{
- for (unsigned int c = 0; c < n_components; c++)
+ for (unsigned int c = 0; c < n_components; ++c)
switch (boundary_kind[c])
{
case inflow_boundary:
// orthogonal to the surface normal. This creates sensitivities
// of across the velocity components.
typename DataVector::value_type vdotn = 0;
- for (unsigned int d = 0; d < dim; d++)
+ for (unsigned int d = 0; d < dim; ++d)
{
vdotn += Wplus[d] * normal_vector[d];
}
{
std::vector<std::string> expressions(EulerEquations<dim>::n_components,
"0.0");
- for (unsigned int di = 0; di < EulerEquations<dim>::n_components; di++)
+ for (unsigned int di = 0; di < EulerEquations<dim>::n_components; ++di)
expressions[di] =
prm.get("w_" + Utilities::int_to_string(di) + " value");
initial_conditions.initialize(
W_old[q][c] +=
old_solution(dof_indices[i]) * fe_v.shape_value_component(i, q, c);
- for (unsigned int d = 0; d < dim; d++)
+ for (unsigned int d = 0; d < dim; ++d)
{
grad_W[q][c][d] += independent_local_dof_values[i] *
fe_v.shape_grad_component(i, q, c)[d];
fe_v.shape_value_component(i, point, component_i) *
fe_v.JxW(point);
- for (unsigned int d = 0; d < dim; d++)
+ for (unsigned int d = 0; d < dim; ++d)
R_i -=
(parameters.theta * flux[point][component_i][d] +
(1.0 - parameters.theta) * flux_old[point][component_i][d]) *
fe_v.shape_grad_component(i, point, component_i)[d] *
fe_v.JxW(point);
- for (unsigned int d = 0; d < dim; d++)
+ for (unsigned int d = 0; d < dim; ++d)
R_i +=
1.0 *
std::pow(fe_v.get_cell()->diameter(),
const unsigned int n_independent_variables =
(external_face == false ? 2 * dofs_per_cell : dofs_per_cell);
- for (unsigned int i = 0; i < dofs_per_cell; i++)
+ for (unsigned int i = 0; i < dofs_per_cell; ++i)
{
independent_local_dof_values[i] = current_solution(dof_indices[i]);
independent_local_dof_values[i].diff(i, n_independent_variables);
}
if (external_face == false)
- for (unsigned int i = 0; i < dofs_per_cell; i++)
+ for (unsigned int i = 0; i < dofs_per_cell; ++i)
{
independent_neighbor_dof_values[i] =
current_solution(dof_indices_neighbor[i]);
parameters.boundary_conditions[boundary_id].values.vector_value_list(
fe_v.get_quadrature_points(), boundary_values);
- for (unsigned int q = 0; q < n_q_points; q++)
+ for (unsigned int q = 0; q < n_q_points; ++q)
{
EulerEquations<dim>::compute_Wminus(
parameters.boundary_conditions[boundary_id].kind,
mass_matrix.reinit(dsp);
assemble_mass_matrix_diagonal(mass_matrix);
diagonal_of_mass_matrix.reinit(solution_index_set);
- for (unsigned int j = 0; j < solution.size(); j++)
+ for (unsigned int j = 0; j < solution.size(); ++j)
diagonal_of_mass_matrix(j) = mass_matrix.diag_element(j);
}
VectorTools::point_value(dof_handler, present_solution, p, tmp_vector);
f << p(dim - 1);
- for (int j = 0; j < dim; j++)
+ for (int j = 0; j < dim; ++j)
f << " " << tmp_vector(j);
f << std::endl;
}
// height="200" />
// where the brown color represents material_a and the green color
// represents material_b.
- for (unsigned int idx = 0; idx < nb_mirror_pairs; idx++)
+ for (unsigned int idx = 0; idx < nb_mirror_pairs; ++idx)
{
const double layer_transition_center =
material_a_wavelength / 2 +
// [subpixel
// smoothing](https://meep.readthedocs.io/en/latest/Subpixel_Smoothing/)
// which improves the precision of the simulation.
- for (unsigned int idx = 0; idx < nb_mirror_pairs; idx++)
+ for (unsigned int idx = 0; idx < nb_mirror_pairs; ++idx)
{
const double layer_transition_center =
material_a_wavelength / 2 +
}
// the material_a layers
- for (unsigned int idx = 0; idx < nb_mirror_pairs; idx++)
+ for (unsigned int idx = 0; idx < nb_mirror_pairs; ++idx)
{
const double layer_center =
material_a_wavelength / 2 +
}
// the material_b layers
- for (unsigned int idx = 0; idx < nb_mirror_pairs; idx++)
+ for (unsigned int idx = 0; idx < nb_mirror_pairs; ++idx)
{
const double layer_center =
material_a_wavelength / 2 +
MGLevelObject<typename SmootherType::AdditionalData> smoother_data(
min_level, max_level);
- for (unsigned int level = min_level; level <= max_level; level++)
+ for (unsigned int level = min_level; level <= max_level; ++level)
{
smoother_data[level].preconditioner =
std::make_shared<SmootherPreconditionerType>();
Vector<double> vmult_result;
Vector<double> forcing_terms;
- for (unsigned int cycle = 0; cycle < n_cycles; cycle++)
+ for (unsigned int cycle = 0; cycle < n_cycles; ++cycle)
{
if (cycle != 0)
{