// Find the support points
// on a cell that
// are multiply mentioned in
- // @p{unit_support_points}.
+ // unit_support_points.
// Mark the first representative
// of each multiply mentioned
// support point by appending its
- // dof index to @p{dofs_of_rep_points}.
+ // dof index to dofs_of_rep_points.
// Each multiple point gets to know
// the dof index of its representative
- // point by the @p{dof_to_rep_dof_table}.
+ // point by the dof_to_rep_dof_table.
// the following vector collects all dofs i,
// 0<=i<fe.dofs_per_cell, for that
// functions for the
// different boundary
// parts. We want the
- // @p{function} to hold on
+ // function to hold on
// all parts of the boundary
typename FunctionMap<dim>::type boundary_functions;
for (unsigned char c=0; c<255; ++c)
// check whether boundary values at
// the left or right boundary of
// the line are
- // requested. @p{direction} denotes
+ // requested. direction denotes
// the neighboring direction in
// which we seek the boundary,
// i.e. 0 is left boundary and 1 is
// set the component mask to either
// the original value or a vector
- // of @p{true}s
+ // of trues
const std::vector<bool> component_mask ((component_mask_.size() == 0) ?
std::vector<bool> (fe.n_components(), true) :
component_mask_);
// set the component mask to either
// the original value or a vector
- // of @p{true}s
+ // of trues
const std::vector<bool> component_mask ((component_mask_.size() == 0) ?
std::vector<bool> (n_components, true) :
component_mask_);
// to be condensed and the solution is to
// be distributed afterwards, which is not
// yet implemented. The reason for this is
- // that we cannot simply use the @p{condense}
+ // that we cannot simply use the condense
// family of functions, since the matrices
// and vectors do not use the global
// numbering but rather the boundary
// this dof is on one of the
// interesting boundary parts
//
- // remember: @p{i} is the global dof
- // number, @p{dof_to_boundary_mapping[i]}
+ // remember: i is the global dof
+ // number, dof_to_boundary_mapping[i]
// is the number on the boundary and
// thus in the solution vector
boundary_values[i] = boundary_projection(dof_to_boundary_mapping[i]);
// try to be a little clever
// to avoid recursive virtual
// function calls when calling
- // @p{gradient_list} for functions
+ // gradient_list for functions
// that are really scalar
// functions
if (fe_is_system)