]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Fix latex problems.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Thu, 6 Aug 2015 11:51:07 +0000 (06:51 -0500)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Sat, 8 Aug 2015 19:34:47 +0000 (14:34 -0500)
include/deal.II/base/derivative_form.h

index bf79b842f09837e77cd034ab3e834cc211b700ac..961e900ef111b1d5a28d0b371f0e8e7802601e72 100644 (file)
@@ -27,7 +27,7 @@ DEAL_II_NAMESPACE_OPEN
  * spacedim-dimensional space. For such objects, the first derivative of the
  * function is a linear map from ${\mathbb R}^{\text{dim}}$ to ${\mathbb
  * R}^{\text{spacedim}}$, i.e., it can be represented as a matrix
- * in ${\mathbb R}^{\text{spacedim}\times \text{dim}}. This makes sense
+ * in ${\mathbb R}^{\text{spacedim}\times \text{dim}}$. This makes sense
  * since one would represent the first derivative, $\nabla f(\mathbf x)$
  * with $\mathbf x\in {\mathbb R}^{\text{dim}}$, in such a way that the
  * directional derivative in direction $\mathbf d\in {\mathbb R}^{\text{dim}}$
@@ -39,7 +39,7 @@ DEAL_II_NAMESPACE_OPEN
  * @f}
  * i.e., one needs to be able to multiply the matrix $\nabla f(\mathbf x)$ by
  * a vector in ${\mathbb R}^{\text{dim}}$, and the result is a difference
- * of function values, which are in ${\mathbb R}^{\text{spacedim}}. Consequently,
+ * of function values, which are in ${\mathbb R}^{\text{spacedim}}$. Consequently,
  * the matrix must be of size $\text{spacedim}\times\text{dim}$.
  *
  * Similarly, the second derivative is a bilinear map from  ${\mathbb

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.