]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Added implementation of ConstraintMatrix::condense() for CompressedSimpleSparsityPatt...
authorMartin Kronbichler <kronbichler@lnm.mw.tum.de>
Wed, 12 Nov 2008 09:03:32 +0000 (09:03 +0000)
committerMartin Kronbichler <kronbichler@lnm.mw.tum.de>
Wed, 12 Nov 2008 09:03:32 +0000 (09:03 +0000)
git-svn-id: https://svn.dealii.org/trunk@17560 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/deal.II/include/dofs/dof_constraints.h
deal.II/deal.II/source/dofs/dof_constraints.cc
deal.II/examples/step-22/doc/results.dox
deal.II/examples/step-22/step-22.cc
deal.II/examples/step-31/step-31.cc
deal.II/examples/step-32/step-32.cc

index 137e94166530a3ef8b8dc986adace1a7a790833c..06ec28b4728c5e39d7aa1837a4e977942a5c7a03 100644 (file)
@@ -31,9 +31,11 @@ template <typename> class FullMatrix;
 class SparsityPattern;
 class CompressedSparsityPattern;
 class CompressedSetSparsityPattern;
+class CompressedSimpleSparsityPattern;
 class BlockSparsityPattern;
 class BlockCompressedSparsityPattern;
 class BlockCompressedSetSparsityPattern;
+class BlockCompressedSimpleSparsityPattern;
 template <typename number> class SparseMatrix;
 template <typename number> class BlockSparseMatrix;
 class BlockIndices;
@@ -719,6 +721,14 @@ class ConstraintMatrix : public Subscriptor
                                      */
     void condense (CompressedSetSparsityPattern &sparsity) const;
 
+                                    /**
+                                     * Same function as above, but
+                                     * condenses compressed
+                                     * sparsity patterns, which are
+                                     * based on the ''simple'' aproach.
+                                     */
+    void condense (CompressedSimpleSparsityPattern &sparsity) const;
+
                                     /**
                                      * Same function as above, but
                                      * condenses square compressed
@@ -752,6 +762,13 @@ class ConstraintMatrix : public Subscriptor
                                      * sparsity patterns.
                                      */
     void condense (BlockCompressedSetSparsityPattern &sparsity) const;
+
+                                    /**
+                                     * Same function as above, but
+                                     * condenses square compressed
+                                     * sparsity patterns.
+                                     */
+    void condense (BlockCompressedSimpleSparsityPattern &sparsity) const;
     
     
                                     /**
index 5dbd6097a969c1bab0f75743011ea6e041cc0e33..242130442447add018e661739af43f984ec24783 100644 (file)
@@ -1095,6 +1095,7 @@ void ConstraintMatrix::condense (CompressedSparsityPattern &sparsity) const
 }
 
 
+
 void ConstraintMatrix::condense (CompressedSetSparsityPattern &sparsity) const
 {
   Assert (sorted == true, ExcMatrixNotClosed());
@@ -1185,6 +1186,141 @@ void ConstraintMatrix::condense (CompressedSetSparsityPattern &sparsity) const
 
 
 
+void ConstraintMatrix::condense (CompressedSimpleSparsityPattern &sparsity) const
+{
+  Assert (sorted == true, ExcMatrixNotClosed());
+  Assert (sparsity.n_rows() == sparsity.n_cols(),
+         ExcNotQuadratic());
+  
+                                  // store for each index whether it must be
+                                  // distributed or not. If entry is
+                                  // numbers::invalid_unsigned_int,
+                                  // no distribution is necessary.
+                                  // otherwise, the number states which line
+                                  // in the constraint matrix handles this
+                                  // index
+  std::vector<unsigned int> distribute(sparsity.n_rows(),
+                                       numbers::invalid_unsigned_int);
+  
+  for (unsigned int c=0; c<lines.size(); ++c)
+    distribute[lines[c].line] = c;
+
+  const unsigned int n_rows = sparsity.n_rows();
+  for (unsigned int row=0; row<n_rows; ++row)
+    {
+      if (distribute[row] == numbers::invalid_unsigned_int)
+                                        // regular line. loop over
+                                        // cols. note that as we
+                                        // proceed to distribute
+                                        // cols, the loop may get
+                                        // longer
+       for (unsigned int j=0; j<sparsity.row_length(row); ++j)
+         {
+           const unsigned int column = sparsity.column_number(row,j);
+
+           if (distribute[column] != numbers::invalid_unsigned_int)
+             {
+                                                // distribute entry
+                                                // at regular row
+                                                // @p{row} and
+                                                // irregular column
+                                                // column. note that
+                                                // this changes the
+                                                // line we are
+                                                // presently working
+                                                // on: we add
+                                                // additional
+                                                // entries. if we add
+                                                // another entry at a
+                                                // column behind the
+                                                // present one, we
+                                                // will encounter it
+                                                // later on (but
+                                                // since it can't be
+                                                // further
+                                                // constrained, won't
+                                                // have to do
+                                                // anything about
+                                                // it). if we add it
+                                                // up front of the
+                                                // present column, we
+                                                // will find the
+                                                // present column
+                                                // later on again as
+                                                // it was shifted
+                                                // back (again
+                                                // nothing happens,
+                                                // in particular no
+                                                // endless loop, as
+                                                // when we encounter
+                                                // it the second time
+                                                // we won't be able
+                                                // to add more
+                                                // entries as they
+                                                // all already exist,
+                                                // but we do the same
+                                                // work more often
+                                                // than necessary,
+                                                // and the loop gets
+                                                // longer), so move
+                                                // the cursor one to
+                                                // the right in the
+                                                // case that we add
+                                                // an entry up front
+                                                // that did not exist
+                                                // before. check
+                                                // whether it existed
+                                                // before by tracking
+                                                // the length of this
+                                                // row
+               unsigned int old_rowlength = sparsity.row_length(row);
+               for (unsigned int q=0;
+                    q!=lines[distribute[column]].entries.size();
+                    ++q) 
+                 {
+                   const unsigned int
+                     new_col = lines[distribute[column]].entries[q].first;
+                   
+                   sparsity.add (row, new_col);
+
+                   const unsigned int new_rowlength = sparsity.row_length(row);
+                   if ((new_col < column) && (old_rowlength != new_rowlength))
+                     ++j;
+                   old_rowlength = new_rowlength;
+                 };
+             };
+         }
+      else
+                                        // row must be distributed
+       for (unsigned int j=0; j<sparsity.row_length(row); ++j)
+         {
+           const unsigned int column = sparsity.column_number(row,j);
+
+           if (distribute[column] == numbers::invalid_unsigned_int)
+                                              // distribute entry at irregular
+                                              // row @p{row} and regular column
+                                              // sparsity.colnums[j]
+             for (unsigned int q=0;
+                  q!=lines[distribute[row]].entries.size(); ++q) 
+               sparsity.add (lines[distribute[row]].entries[q].first,
+                             column);
+           else
+                                              // distribute entry at irregular
+                                              // row @p{row} and irregular column
+                                              // sparsity.get_column_numbers()[j]
+             for (unsigned int p=0; p!=lines[distribute[row]].entries.size(); ++p)
+               for (unsigned int q=0;
+                    q!=lines[distribute[sparsity.column_number(row,j)]]
+                                   .entries.size(); ++q)
+                 sparsity.add (lines[distribute[row]].entries[p].first,
+                               lines[distribute[sparsity.column_number(row,j)]]
+                               .entries[q].first);
+         };
+    };
+}
+
+
+
 void ConstraintMatrix::condense (BlockSparsityPattern &sparsity) const
 {
   Assert (sorted == true, ExcMatrixNotClosed());
@@ -1582,6 +1718,140 @@ void ConstraintMatrix::condense (BlockCompressedSetSparsityPattern &sparsity) co
 
 
 
+void ConstraintMatrix::condense (BlockCompressedSimpleSparsityPattern &sparsity) const
+{
+  Assert (sorted == true, ExcMatrixNotClosed());
+  Assert (sparsity.n_rows() == sparsity.n_cols(),
+         ExcNotQuadratic());
+  Assert (sparsity.n_block_rows() == sparsity.n_block_cols(),
+         ExcNotQuadratic());
+  Assert (sparsity.get_column_indices() == sparsity.get_row_indices(),
+         ExcNotQuadratic());
+  
+  const BlockIndices &
+    index_mapping = sparsity.get_column_indices();
+
+  const unsigned int n_blocks = sparsity.n_block_rows();
+  
+                                  // store for each index whether it must be
+                                  // distributed or not. If entry is
+                                  // numbers::invalid_unsigned_int,
+                                  // no distribution is necessary.
+                                  // otherwise, the number states which line
+                                  // in the constraint matrix handles this
+                                  // index
+  std::vector<unsigned int> distribute (sparsity.n_rows(),
+                                        numbers::invalid_unsigned_int);
+  
+  for (unsigned int c=0; c<lines.size(); ++c)
+    distribute[lines[c].line] = static_cast<signed int>(c);
+
+  const unsigned int n_rows = sparsity.n_rows();
+  for (unsigned int row=0; row<n_rows; ++row)
+    {
+                                      // get index of this row
+                                      // within the blocks
+      const std::pair<unsigned int,unsigned int>
+       block_index = index_mapping.global_to_local(row);
+      const unsigned int block_row = block_index.first;
+      const unsigned int local_row = block_index.second;
+      
+      if (distribute[row] == numbers::invalid_unsigned_int)
+                                        // regular line. loop over
+                                        // all columns and see
+                                        // whether this column must
+                                        // be distributed. note that
+                                        // as we proceed to
+                                        // distribute cols, the loop
+                                        // over cols may get longer.
+                                        //
+                                        // don't try to be clever
+                                        // here as in the algorithm
+                                        // for the
+                                        // CompressedSparsityPattern,
+                                        // as that would be much more
+                                        // complicated here. after
+                                        // all, we know that
+                                        // compressed patterns are
+                                        // inefficient...
+       {
+
+                                          // to loop over all entries
+                                          // in this row, we have to
+                                          // loop over all blocks in
+                                          // this blockrow and the
+                                          // corresponding row
+                                          // therein
+         for (unsigned int block_col=0; block_col<n_blocks; ++block_col)
+           {
+             const CompressedSimpleSparsityPattern &
+               block_sparsity = sparsity.block(block_row, block_col);
+
+             for (unsigned int j=0; j<block_sparsity.row_length(local_row); ++j)
+               {
+                 const unsigned int global_col
+                   = index_mapping.local_to_global(block_col,
+                                                   block_sparsity.column_number(local_row,j));
+                   
+                 if (distribute[global_col] != numbers::invalid_unsigned_int)
+                                                    // distribute entry at regular
+                                                    // row @p{row} and irregular column
+                                                    // global_col
+                   {
+                     for (unsigned int q=0;
+                          q!=lines[distribute[global_col]]
+                                         .entries.size(); ++q)
+                       sparsity.add (row,
+                                     lines[distribute[global_col]].entries[q].first);
+                   };
+               };
+           };
+       }
+      else
+       {
+                                          // row must be
+                                          // distributed. split the
+                                          // whole row into the
+                                          // chunks defined by the
+                                          // blocks
+         for (unsigned int block_col=0; block_col<n_blocks; ++block_col)
+           {
+             const CompressedSimpleSparsityPattern &
+               block_sparsity = sparsity.block(block_row,block_col);
+      
+             for (unsigned int j=0; j<block_sparsity.row_length(local_row); ++j)
+               {
+                 const unsigned int global_col
+                   = index_mapping.local_to_global (block_col,
+                                                    block_sparsity.column_number(local_row,j));
+                   
+                 if (distribute[global_col] == numbers::invalid_unsigned_int)
+                                                    // distribute entry at irregular
+                                                    // row @p{row} and regular column
+                                                    // global_col.
+                   {
+                     for (unsigned int q=0; q!=lines[distribute[row]].entries.size(); ++q) 
+                       sparsity.add (lines[distribute[row]].entries[q].first,
+                                     global_col);
+                   }
+                 else
+                                                    // distribute entry at irregular
+                                                    // row @p{row} and irregular column
+                                                    // @p{global_col}
+                   {
+                     for (unsigned int p=0; p!=lines[distribute[row]].entries.size(); ++p)
+                       for (unsigned int q=0; q!=lines[distribute[global_col]].entries.size(); ++q)
+                         sparsity.add (lines[distribute[row]].entries[p].first,
+                                       lines[distribute[global_col]].entries[q].first);
+                   };
+               };
+           };
+       };
+    };
+}
+
+
+
 unsigned int ConstraintMatrix::n_constraints () const
 {
   return lines.size();
index 048f89ee34de6c85349d4e627c0a454e4a807be6..3599cda871285342d243b53dc315a1debf2ee9c8 100644 (file)
@@ -5,8 +5,9 @@
 
 <h4>2D calculations</h4>
 
-Running the program with the space dimension set to 2 in
-<code>main()</code> yields the following output:
+Running the program with the space dimension set to 2 in <code>main()</code>
+yields the following output (when the flag is set to optimized in the
+Makefile):
 @code
 examples/step-22> make run
 ============================ Remaking Makefile.dep
@@ -54,16 +55,9 @@ Refinement cycle 5
    Assembling...
    Computing preconditioner...
    Solving...  11 outer CG Schur complement iterations for pressure
-
-Refinement cycle 6
-   Number of active cells: 8896
-   Number of degrees of freedom: 83885 (74474+9411)
-   Assembling...
-   Computing preconditioner...
-   Solving...  11 outer CG Schur complement iterations for pressure
 @endcode
 
-The entire computation above takes about 30 seconds on a reasonably
+The entire computation above takes about 20 seconds on a reasonably
 quick (for 2007 standards) machine.
 
 What we see immediately from this is that the number of (outer)
@@ -181,12 +175,7 @@ Refinement cycle 5
 Again, we see that the number of outer iterations does not increase as
 we refine the mesh. Nevertheless, the compute time increases
 significantly: for each of the iterations above separately, it takes a
-few seconds, a few seconds, 1min, 5min, 21min, and 1h35. (One level
-more can be run on machines with more memory, though one may have to
-replace the BlockCompressedSetSparsityPattern class by the
-BlockCompressedSparsityPattern class as the former needs significantly
-more memory and becomes the bottleneck; the latter class, however, has
-a superlinear runtime complexity.) This overall
+few seconds, a few seconds, 1min, 5min, 21min, and 1h35. This overall
 superlinear (in the number of unknowns) increase in runtime is due to the fact
 that our inner solver is not ${\cal O}(N)$: a simple experiment shows
 that as we keep refining the mesh, the average number of
index a6e73ce1e3b59b06a930e5a16989f63b7f68752c..205b8cc518e6e632021604a6c7676e48dfbce89b 100644 (file)
@@ -336,22 +336,20 @@ InverseMatrix<Matrix,Preconditioner>::InverseMatrix (const Matrix &m,
                                 // This is the implementation of the 
                                 // <code>vmult</code> function.
                     
-                                // Note that we use a rather large
-                                // tolerance for the solver
-                                // control. The reason for this is
-                                // that the function is used very
-                                // frequently, and hence, any
-                                // additional effort to make the
-                                // residual in the CG solve smaller
-                                // makes the solution more
-                                // expensive. Note that we do not
-                                // only use this class as a
-                                // preconditioner for the Schur
-                                // complement, but also when forming
-                                // the inverse of the Laplace matrix -
-                                // which needs to be accurate in
-                                // order to obtain a solution to the
-                                // right problem.
+                                // In this class we use a rather large
+                                // tolerance for the solver control. The
+                                // reason for this is that the function is
+                                // used very frequently, and hence, any
+                                // additional effort to make the residual
+                                // in the CG solve smaller makes the
+                                // solution more expensive. Note that we do
+                                // not only use this class as a
+                                // preconditioner for the Schur complement,
+                                // but also when forming the inverse of the
+                                // Laplace matrix &ndash; which is hence
+                                // directly responsible for the accuracy of
+                                // the solution itself, so we can't choose
+                                // a too large tolerance, either.
 template <class Matrix, class Preconditioner>
 void InverseMatrix<Matrix,Preconditioner>::vmult (Vector<double>       &dst,
                                                  const Vector<double> &src) const
@@ -599,95 +597,88 @@ void StokesProblem<dim>::setup_dofs ()
             << std::endl;
       
                                   // The next task is to allocate a
-                                  // sparsity pattern for the system
-                                  // matrix we will create. We could
-                                  // do this in the same way as in
-                                  // step-20, i.e. directly build an
-                                  // object of type SparsityPattern
-                                  // through
+                                  // sparsity pattern for the system matrix
+                                  // we will create. We could do this in
+                                  // the same way as in step-20,
+                                  // i.e. directly build an object of type
+                                  // SparsityPattern through
                                   // DoFTools::make_sparsity_pattern. However,
-                                  // there is a major reason not to
-                                  // do so: In 3D, the function
+                                  // there is a major reason not to do so:
+                                  // In 3D, the function
                                   // DoFTools::max_couplings_between_dofs
-                                  // yields a conservative but rather
-                                  // large number for the coupling
-                                  // between the individual dofs, so
-                                  // that the memory initially
-                                  // provided for the creation of the
-                                  // sparsity pattern of the matrix
-                                  // is far too much -- so much
-                                  // actually that the initial
-                                  // sparsity pattern won't even fit
-                                  // into the physical memory of most
-                                  // systems already for
-                                  // moderately-sized 3D problems,
-                                  // see also the discussion in
-                                  // step-18.  Instead, we first
-                                  // build a temporary object that
-                                  // uses a different data structure
-                                  // that doesn't require allocating
-                                  // more memory than necessary but
-                                  // isn't suitable for use as a
-                                  // basis of SparseMatrix or
-                                  // BlockSparseMatrix objects; in a
-                                  // second step we then copy this
-                                  // object into an object of
-                                  // BlockSparsityPattern. This is
-                                  // entirely analgous to what we
-                                  // already did in step-11 and
-                                  // step-18.
+                                  // yields a conservative but rather large
+                                  // number for the coupling between the
+                                  // individual dofs, so that the memory
+                                  // initially provided for the creation of
+                                  // the sparsity pattern of the matrix is
+                                  // far too much -- so much actually that
+                                  // the initial sparsity pattern won't
+                                  // even fit into the physical memory of
+                                  // most systems already for
+                                  // moderately-sized 3D problems, see also
+                                  // the discussion in step-18.  Instead,
+                                  // we first build a temporary object that
+                                  // uses a different data structure that
+                                  // doesn't require allocating more memory
+                                  // than necessary but isn't suitable for
+                                  // use as a basis of SparseMatrix or
+                                  // BlockSparseMatrix objects; in a second
+                                  // step we then copy this object into an
+                                  // object of BlockSparsityPattern. This
+                                  // is entirely analgous to what we
+                                  // already did in step-11 and step-18.
                                   //
-                                  // There is one snag again here,
-                                  // though: just as in step-27, it
-                                  // turns out that using the
-                                  // CompressedSparsityPattern (or
-                                  // the block version
-                                  // BlockCompressedSparsityPattern
-                                  // we would use here)
-                                  // has a bottleneck that makes the
-                                  // algorithm to build the sparsity
-                                  // pattern be quadratic in the
-                                  // number of degrees of
-                                  // freedom. This doesn't become
-                                  // noticable until we get well into
-                                  // the range of several 100,000
-                                  // degrees of freedom, but
-                                  // eventually dominates the setup
-                                  // of the linear system when we get
-                                  // to more than a million degrees
-                                  // of freedom. This is due to the
-                                  // data structures used in the
+                                  // There is one snag again here, though:
+                                  // it turns out that using the
+                                  // CompressedSparsityPattern (or the
+                                  // block version
+                                  // BlockCompressedSparsityPattern we
+                                  // would use here) has a bottleneck that
+                                  // makes the algorithm to build the
+                                  // sparsity pattern be quadratic in the
+                                  // number of degrees of freedom. This
+                                  // doesn't become noticable until we get
+                                  // well into the range of several 100,000
+                                  // degrees of freedom, but eventually
+                                  // dominates the setup of the linear
+                                  // system when we get to more than a
+                                  // million degrees of freedom. This is
+                                  // due to the data structures used in the
                                   // CompressedSparsityPattern class,
                                   // nothing that can easily be
-                                  // changed. Fortunately, there is
-                                  // an easy solution, as already
-                                  // pointed out in step-27: the
-                                  // CompressedSetSparsityPattern
-                                  // class (and its block variant
-                                  // BlockCompressedSetSparsityPattern)
-                                  // has exactly the same interface,
-                                  // uses a different internal data
-                                  // structure, is slightly slower
-                                  // for smaller numbers of degrees
-                                  // of freedom (but there we don't
-                                  // care that much anyway) but is
-                                  // linear in the number of degrees
-                                  // of freedom and therefore much
-                                  // more efficient for large
-                                  // problems.
+                                  // changed. Fortunately, there is an easy
+                                  // solution: the
+                                  // CompressedSimpleSparsityPattern class
+                                  // (and its block variant
+                                  // BlockCompressedSimpleSparsityPattern)
+                                  // has exactly the same interface, uses a
+                                  // different internal data structure, is
+                                  // slightly slower for smaller numbers of
+                                  // degrees of freedom (but there we don't
+                                  // care that much anyway) but is linear
+                                  // in the number of degrees of freedom
+                                  // and therefore much more efficient for
+                                  // large problems. As another
+                                  // alternative, we could also have chosen
+                                  // the class
+                                  // BlockCompressedSetSparsityPattern that
+                                  // uses yet another strategy for internal
+                                  // memory management. Though, that class
+                                  // turns out to be more memory-demanding
+                                  // than
+                                  // BlockCompressedSimpleSparsityPattern
+                                  // for this example.
                                   //
-                                  // Consequently, this is the class
-                                  // that we will use for our
-                                  // intermediate sparsity
-                                  // representation. All this is done
-                                  // inside a new scope, which means
-                                  // that the memory of
-                                  // <code>csp</code> will be
-                                  // released once the information
+                                  // Consequently, this is the class that
+                                  // we will use for our intermediate
+                                  // sparsity representation. All this is
+                                  // done inside a new scope, which means
+                                  // that the memory of <code>csp</code>
+                                  // will be released once the information
                                   // has been copied to
                                   // <code>sparsity_pattern</code>.
   {
-    BlockCompressedSetSparsityPattern csp (2,2);
+    BlockCompressedSimpleSparsityPattern csp (2,2);
 
     csp.block(0,0).reinit (n_u, n_u);
     csp.block(1,0).reinit (n_p, n_u);
@@ -858,23 +849,20 @@ void StokesProblem<dim>::assemble_system ()
            }
        }
 
-                                      // Note that in the above
-                                      // computation of the local
-                                      // matrix contribution we added
-                                      // the term <code> phi_p[i] *
-                                      // phi_p[j] </code>, yielding a
+                                      // Note that in the above computation
+                                      // of the local matrix contribution
+                                      // we added the term <code> phi_p[i]
+                                      // * phi_p[j] </code>, yielding a
                                       // pressure mass matrix in the
-                                      // $(1,1)$ block of the matrix
-                                      // as discussed in the
-                                      // introduction. That this term
-                                      // only ends up in the $(1,1)$
-                                      // block stems from the fact
-                                      // that both of the factors in
-                                      // <code>phi_p[i] *
-                                      // phi_p[j]</code> are only
-                                      // non-zero when all the other
-                                      // terms vanish (and the other
-                                      // way around).
+                                      // $(1,1)$ block of the matrix as
+                                      // discussed in the
+                                      // introduction. That this term only
+                                      // ends up in the $(1,1)$ block stems
+                                      // from the fact that both of the
+                                      // factors in <code>phi_p[i] *
+                                      // phi_p[j]</code> are only non-zero
+                                      // when all the other terms vanish
+                                      // (and the other way around).
                                       //
                                       // Note also that operator* is
                                       // overloaded for symmetric
@@ -923,33 +911,28 @@ void StokesProblem<dim>::assemble_system ()
     }
 
                                   // After the addition of the local
-                                  // contributions, we have to
-                                  // condense the hanging node
-                                  // constraints and interpolate
-                                  // Dirichlet boundary conditions.
-                                  // Further down below where we set
-                                  // up the mesh, we will associate
+                                  // contributions, we have to condense the
+                                  // hanging node constraints and
+                                  // interpolate Dirichlet boundary
+                                  // conditions.  Further down below where
+                                  // we set up the mesh, we will associate
                                   // the top boundary where we impose
-                                  // Dirichlet boundary conditions
-                                  // with boundary indicator 1.  We
-                                  // will have to pass this boundary
-                                  // indicator as second argument to
-                                  // the function below interpolating
-                                  // boundary values.  There is one
-                                  // more thing, though.  The
-                                  // function describing the
-                                  // Dirichlet conditions was defined
-                                  // for all components, both
-                                  // velocity and pressure. However,
-                                  // the Dirichlet conditions are to
-                                  // be set for the velocity only.
-                                  // To this end, we use a
+                                  // Dirichlet boundary conditions with
+                                  // boundary indicator 1.  We will have to
+                                  // pass this boundary indicator as second
+                                  // argument to the function below
+                                  // interpolating boundary values.  There
+                                  // is one more thing, though.  The
+                                  // function describing the Dirichlet
+                                  // conditions was defined for all
+                                  // components, both velocity and
+                                  // pressure. However, the Dirichlet
+                                  // conditions are to be set for the
+                                  // velocity only.  To this end, we use a
                                   // <code>component_mask</code> that
-                                  // filters out the pressure
-                                  // component, so that the
-                                  // condensation is performed on
-                                  // velocity degrees of freedom
-                                  // only:
+                                  // filters out the pressure component, so
+                                  // that the condensation is performed on
+                                  // velocity degrees of freedom only:
   hanging_node_constraints.condense (system_matrix);
   hanging_node_constraints.condense (system_rhs);  
 
@@ -973,17 +956,16 @@ void StokesProblem<dim>::assemble_system ()
                                   // linear system, we generate a
                                   // preconditioner for the
                                   // velocity-velocity matrix, i.e.,
-                                  // <code>block(0,0)</code> in the
-                                  // system matrix. As mentioned
-                                  // above, this depends on the
-                                  // spatial dimension. Since the two
-                                  // classes described by the
-                                  // <code>InnerPreconditioner@<dim@> :: type</code>
-                                  // typedef have the same interface,
-                                  // we do not have to do anything
-                                  // different whether we want to use
-                                  // a sparse direct solver or an
-                                  // ILU:
+                                  // <code>block(0,0)</code> in the system
+                                  // matrix. As mentioned above, this
+                                  // depends on the spatial
+                                  // dimension. Since the two classes
+                                  // described by the
+                                  // <code>InnerPreconditioner@<dim@> ::
+                                  // type</code> typedef have the same
+                                  // interface, we do not have to do
+                                  // anything different whether we want to
+                                  // use a sparse direct solver or an ILU:
   std::cout << "   Computing preconditioner..." << std::endl << std::flush;
       
   A_preconditioner
@@ -1041,49 +1023,50 @@ void StokesProblem<dim>::solve ()
                                  1e-6*schur_rhs.l2_norm());
     SolverCG<>    cg (solver_control);
     
-                                    // Now to the preconditioner to
-                                    // the Schur complement. As
-                                    // explained in the introduction,
-                                    // the preconditioning is done by
-                                    // a mass matrix in the pressure
-                                    // variable.  It is stored in the
-                                    // $(1,1)$ block of the system
-                                    // matrix (that is not used
+                                    // Now to the preconditioner to the
+                                    // Schur complement. As explained in
+                                    // the introduction, the
+                                    // preconditioning is done by a mass
+                                    // matrix in the pressure variable.  It
+                                    // is stored in the $(1,1)$ block of
+                                    // the system matrix (that is not used
                                     // anywhere else but in
                                     // preconditioning).
                                     //
-                                    // Actually, the solver needs to have the
-                                    // preconditioner in the form $P^{-1}$, so
-                                    // we need to create an inverse
-                                    // operation. Once again, we use an
-                                    // object of the class
+                                    // Actually, the solver needs to have
+                                    // the preconditioner in the form
+                                    // $P^{-1}$, so we need to create an
+                                    // inverse operation. Once again, we
+                                    // use an object of the class
                                     // <code>InverseMatrix</code>, which
                                     // implements the <code>vmult</code>
                                     // operation that is needed by the
                                     // solver.  In this case, we have to
-                                    // invert the pressure mass matrix. As it
-                                    // already turned out in earlier tutorial
-                                    // programs, the inversion of a mass
-                                    // matrix is a rather cheap and
+                                    // invert the pressure mass matrix. As
+                                    // it already turned out in earlier
+                                    // tutorial programs, the inversion of
+                                    // a mass matrix is a rather cheap and
                                     // straight-forward operation (compared
                                     // to, e.g., a Laplace matrix). The CG
                                     // method with ILU preconditioning
                                     // converges in 5-10 steps,
-                                    // independently on the mesh size.  This
-                                    // is precisely what we do here: We
-                                    // choose another ILU preconditioner 
+                                    // independently on the mesh size.
+                                    // This is precisely what we do here:
+                                    // We choose another ILU preconditioner
                                     // and take it along to the
                                     // InverseMatrix object via the
                                     // corresponding template parameter.  A
                                     // CG solver is then called within the
-                                    // vmult operation of the inverse matrix.
+                                    // vmult operation of the inverse
+                                    // matrix.
                                     //
-                                    // An alternative that is cheaper to build,
-                                    // but needs more iterations afterwards,
-                                    // would be to choose a SSOR preconditioner
-                                    // with factor 1.2. It needs about twice 
-                                    // the number of iterations, but the costs
-                                    // for its generation are almost neglible.
+                                    // An alternative that is cheaper to
+                                    // build, but needs more iterations
+                                    // afterwards, would be to choose a
+                                    // SSOR preconditioner with factor
+                                    // 1.2. It needs about twice the number
+                                    // of iterations, but the costs for its
+                                    // generation are almost neglible.
     SparseILU<double> preconditioner;
     preconditioner.initialize (system_matrix.block(1,1), 
       SparseILU<double>::AdditionalData());
@@ -1091,21 +1074,20 @@ void StokesProblem<dim>::solve ()
     InverseMatrix<SparseMatrix<double>,SparseILU<double> >
       m_inverse (system_matrix.block(1,1), preconditioner);
     
-                                    // With the Schur complement and
-                                    // an efficient preconditioner at
-                                    // hand, we can solve the
-                                    // respective equation for the
-                                    // pressure (i.e. block 0 in the
-                                    // solution vector) in the usual
+                                    // With the Schur complement and an
+                                    // efficient preconditioner at hand, we
+                                    // can solve the respective equation
+                                    // for the pressure (i.e. block 0 in
+                                    // the solution vector) in the usual
                                     // way:
     cg.solve (schur_complement, solution.block(1), schur_rhs,
              m_inverse);
   
-                                    // After this first solution step,
-                                    // the hanging node constraints have
-                                    // to be distributed to the solution
-                                    // in order to achieve a consistent 
-                                    // pressure field.
+                                    // After this first solution step, the
+                                    // hanging node constraints have to be
+                                    // distributed to the solution in order
+                                    // to achieve a consistent pressure
+                                    // field.
     hanging_node_constraints.distribute (solution);
   
     std::cout << "  "
@@ -1115,19 +1097,17 @@ void StokesProblem<dim>::solve ()
              << std::endl;    
   }
     
-                                  // As in step-20, we finally need
-                                  // to solve for the velocity
-                                  // equation where we plug in the
-                                  // solution to the pressure
-                                  // equation. This involves only
-                                  // objects we already know - so we
-                                  // simply multiply $p$ by $B^T$,
-                                  // subtract the right hand side and
-                                  // multiply by the inverse of
-                                  // $A$. At the end, we need to
+                                  // As in step-20, we finally need to
+                                  // solve for the velocity equation where
+                                  // we plug in the solution to the
+                                  // pressure equation. This involves only
+                                  // objects we already know - so we simply
+                                  // multiply $p$ by $B^T$, subtract the
+                                  // right hand side and multiply by the
+                                  // inverse of $A$. At the end, we need to
                                   // distribute the constraints from
-                                  // hanging nodes in order to obtain
-                                  // constistent flow field:
+                                  // hanging nodes in order to obtain a
+                                  // constistent flow field:
   {
     system_matrix.block(0,1).vmult (tmp, solution.block(1));
     tmp *= -1;
@@ -1144,43 +1124,41 @@ void StokesProblem<dim>::solve ()
                         
                                 // The next function generates graphical
                                 // output. In this example, we are going to
-                                // use the VTK file format.  We attach names
-                                // to the individual variables in the problem:
-                                // <code>velocity</code> to the <code>dim</code>
-                                // components of velocity and <code>pressure</code>
-                                // to the pressure.
+                                // use the VTK file format.  We attach
+                                // names to the individual variables in the
+                                // problem: <code>velocity</code> to the
+                                // <code>dim</code> components of velocity
+                                // and <code>pressure</code> to the
+                                // pressure.
                                 //
-                                // Not all visualization programs
-                                // have the ability to group
-                                // individual vector components into
-                                // a vector to provide vector plots;
-                                // in particular, this holds for some
-                                // VTK-based visualization
-                                // programs. In this case, the
-                                // logical grouping of components
-                                // into vectors should already be
-                                // described in the file containing
-                                // the data. In other words, what we
-                                // need to do is provide our output
-                                // writers with a way to know which
-                                // of the components of the finite
-                                // element logically form a vector
-                                // (with $d$ components in $d$ space
-                                // dimensions) rather than letting
-                                // them assume that we simply have a
-                                // bunch of scalar fields.  This is
-                                // achieved using the members of the
+                                // Not all visualization programs have the
+                                // ability to group individual vector
+                                // components into a vector to provide
+                                // vector plots; in particular, this holds
+                                // for some VTK-based visualization
+                                // programs. In this case, the logical
+                                // grouping of components into vectors
+                                // should already be described in the file
+                                // containing the data. In other words,
+                                // what we need to do is provide our output
+                                // writers with a way to know which of the
+                                // components of the finite element
+                                // logically form a vector (with $d$
+                                // components in $d$ space dimensions)
+                                // rather than letting them assume that we
+                                // simply have a bunch of scalar fields.
+                                // This is achieved using the members of
+                                // the
                                 // <code>DataComponentInterpretation</code>
-                                // namespace: as with the filename,
-                                // we create a vector in which the
-                                // first <code>dim</code> components
-                                // refer to the velocities and are
-                                // given the tag
+                                // namespace: as with the filename, we
+                                // create a vector in which the first
+                                // <code>dim</code> components refer to the
+                                // velocities and are given the tag
                                 // <code>DataComponentInterpretation::component_is_part_of_vector</code>;
                                 // we finally push one tag
                                 // <code>DataComponentInterpretation::component_is_scalar</code>
-                                // to describe the grouping of the
-                                // pressure variable.
+                                // to describe the grouping of the pressure
+                                // variable.
 
                                 // The rest of the function is then
                                 // the same as in step-20.
@@ -1216,19 +1194,18 @@ StokesProblem<dim>::output_results (const unsigned int refinement_cycle)  const
 
                                 // @sect4{StokesProblem::refine_mesh}
                         
-                                // This is the last interesting function
-                                // of the <code>StokesProblem</code> class.
+                                // This is the last interesting function of
+                                // the <code>StokesProblem</code> class.
                                 // As indicated by its name, it takes the
-                                // solution to the problem and
-                                // refines the mesh where this is
-                                // needed. The procedure is the same
-                                // as in the respective step in
-                                // step-6, with the exception that
-                                // we base the refinement only on the
-                                // change in pressure, i.e., we call
-                                // the Kelly error estimator with a
-                                // mask object. Additionally, we do
-                                // not coarsen the grid again:
+                                // solution to the problem and refines the
+                                // mesh where this is needed. The procedure
+                                // is the same as in the respective step in
+                                // step-6, with the exception that we base
+                                // the refinement only on the change in
+                                // pressure, i.e., we call the Kelly error
+                                // estimator with a mask
+                                // object. Additionally, we do not coarsen
+                                // the grid again:
 template <int dim>
 void
 StokesProblem<dim>::refine_mesh () 
@@ -1253,28 +1230,25 @@ StokesProblem<dim>::refine_mesh ()
 
                                 // @sect4{StokesProblem::run}
                         
-                                // The last step in the Stokes class
-                                // is, as usual, the function that generates
-                                // the initial grid and calls the other
+                                // The last step in the Stokes class is, as
+                                // usual, the function that generates the
+                                // initial grid and calls the other
                                 // functions in the respective order.
                                 //
-                                // We start off with a rectangle of
-                                // size $4 \times 1$ (in 2d) or $4
-                                // \times 1 \times 1$ (in 3d), placed
-                                // in $R^2/R^3$ as
+                                // We start off with a rectangle of size $4
+                                // \times 1$ (in 2d) or $4 \times 1 \times
+                                // 1$ (in 3d), placed in $R^2/R^3$ as
                                 // $(-2,2)\times(-1,0)$ or
                                 // $(-2,2)\times(0,1)\times(-1,1)$,
-                                // respectively. It is natural to
-                                // start with equal mesh size in each
-                                // direction, so we subdivide the
-                                // initial rectangle four times in
-                                // the first coordinate direction. To
-                                // limit the scope of the variables
-                                // involved in the creation of the
-                                // mesh to the range where we
-                                // actually need them, we put the
-                                // entire block between a pair of
-                                // braces:
+                                // respectively. It is natural to start
+                                // with equal mesh size in each direction,
+                                // so we subdivide the initial rectangle
+                                // four times in the first coordinate
+                                // direction. To limit the scope of the
+                                // variables involved in the creation of
+                                // the mesh to the range where we actually
+                                // need them, we put the entire block
+                                // between a pair of braces:
 template <int dim>
 void StokesProblem<dim>::run () 
 {
@@ -1309,22 +1283,19 @@ void StokesProblem<dim>::run ()
        cell->face(f)->set_all_boundary_indicators(1);
   
   
-                                  // We then apply an initial
-                                  // refinement before solving for
-                                  // the first time. In 3D, there are
-                                  // going to be more degrees of
-                                  // freedom, so we refine less
-                                  // there:
+                                  // We then apply an initial refinement
+                                  // before solving for the first time. In
+                                  // 3D, there are going to be more degrees
+                                  // of freedom, so we refine less there:
   triangulation.refine_global (4-dim);
 
-                                  // As first seen in step-6, we
-                                  // cycle over the different
-                                  // refinement levels and refine
-                                  // (except for the first cycle),
+                                  // As first seen in step-6, we cycle over
+                                  // the different refinement levels and
+                                  // refine (except for the first cycle),
                                   // setup the degrees of freedom and
-                                  // matrices, assemble, solve and
-                                  // create output:
-  for (unsigned int refinement_cycle = 0; refinement_cycle<4;
+                                  // matrices, assemble, solve and create
+                                  // output:
+  for (unsigned int refinement_cycle = 0; refinement_cycle<6;
        ++refinement_cycle)
     {
       std::cout << "Refinement cycle " << refinement_cycle << std::endl;
@@ -1359,7 +1330,7 @@ int main ()
     {
       deallog.depth_console (0);
 
-      StokesProblem<3> flow_problem(1);
+      StokesProblem<2> flow_problem(1);
       flow_problem.run ();
     }
   catch (std::exception &exc)
index 369abc7b6f0631e22ef457650c9c768c7f0ac248..a224297f41df36b2572a2cc60b1e59307b157a75 100644 (file)
@@ -406,12 +406,11 @@ namespace LinearSolvers
                                   // SIAM J. Numer. Anal., 31 (1994),
                                   // pp. 1352-1367).
                                   // 
-                                  // Replacing <i>P</i> by $\tilde{P}$ does
-                                  // not change the situation
-                                  // dramatically. The product $P^{-1} A$
-                                  // will still be close to a matrix with
-                                  // eigenvalues 0 and 1, which lets us
-                                  // hope to be able to get a number of
+                                  // Replacing <i>P</i> by $\tilde{P}$
+                                  // keeps that spirit alive: the product
+                                  // $P^{-1} A$ will still be close to a
+                                  // matrix with eigenvalues 1, which lets
+                                  // us hope to be able to get a number of
                                   // GMRES iterations that does not depend
                                   // on the problem size.
                                   //
@@ -1129,7 +1128,7 @@ void BoussinesqFlowProblem<dim>::setup_dofs ()
                                   // step-22, we choose to create the pattern
                                   // not as in the first few tutorial
                                   // programs, but by using the blocked
-                                  // version of CompressedSetSparsityPattern.
+                                  // version of CompressedSimpleSparsityPattern.
                                   // The reason for doing this is mainly
                                   // memory, that is, the SparsityPattern
                                   // class would consume too much memory when
@@ -1139,56 +1138,59 @@ void BoussinesqFlowProblem<dim>::setup_dofs ()
                                   // So, we first release the memory stored
                                   // in the matrices, then set up an object
                                   // of type
-                                  // BlockCompressedSetSparsityPattern
+                                  // BlockCompressedSimpleSparsityPattern
                                   // consisting of $2\times 2$ blocks (for
                                   // the Stokes system matrix and
                                   // preconditioner) or
-                                  // CompressedSparsityPattern (for the
-                                  // temperature part). We then fill these
-                                  // sparsity patterns with the nonzero
+                                  // CompressedSimpleSparsityPattern (for
+                                  // the temperature part). We then fill
+                                  // these objects with the nonzero
                                   // pattern, taking into account that for
                                   // the Stokes system matrix, there are no
                                   // entries in the pressure-pressure block
                                   // (but all velocity vector components
                                   // couple with each other and with the
                                   // pressure). Similarly, in the Stokes
-                                  // preconditioner matrix, only the diagonal
-                                  // blocks are nonzero, since we use the
-                                  // vector Laplacian as discussed in the
-                                  // introduction. This operator only couples
-                                  // each vector component of the Laplacian
-                                  // with itself, but not with the other
-                                  // vector components. (Application of the
+                                  // preconditioner matrix, only the
+                                  // diagonal blocks are nonzero, since we
+                                  // use the vector Laplacian as discussed
+                                  // in the introduction. This operator
+                                  // only couples each vector component of
+                                  // the Laplacian with itself, but not
+                                  // with the other vector
+                                  // components. (Application of the
                                   // constraints resulting from the no-flux
                                   // boundary conditions will couple vector
                                   // components at the boundary again,
                                   // however.)
                                   //
-                                  // When generating the sparsity pattern, we
-                                  // directly apply the constraints from
+                                  // When generating the sparsity pattern,
+                                  // we directly apply the constraints from
                                   // hanging nodes and no-flux boundary
                                   // conditions. This approach was already
                                   // used in step-27, but is different from
-                                  // the one in early tutorial programs where
-                                  // we first built the original sparsity
-                                  // pattern and only then added the entries
-                                  // resulting from constraints. The reason
-                                  // for doing so is that later during
-                                  // assembly we are going to distribute the
-                                  // constraints immediately when
-                                  // transferring local to global
-                                  // dofs. Consequently, there will be no
-                                  // data written at positions of constrained
-                                  // degrees of freedom, so we can let the
-                                  // DoFTools::make_sparsity_pattern function
-                                  // omit these entries by setting the last
-                                  // boolean flag to <code>false</code>. Once
-                                  // the sparsity pattern is ready, we can
-                                  // use it to initialize the Trilinos
-                                  // matrices. Note that the Trilinos
-                                  // matrices store the sparsity pattern
-                                  // internally, so there is no need to keep
-                                  // the sparsity pattern around after the
+                                  // the one in early tutorial programs
+                                  // where we first built the original
+                                  // sparsity pattern and only then added
+                                  // the entries resulting from
+                                  // constraints. The reason for doing so
+                                  // is that later during assembly we are
+                                  // going to distribute the constraints
+                                  // immediately when transferring local to
+                                  // global dofs. Consequently, there will
+                                  // be no data written at positions of
+                                  // constrained degrees of freedom, so we
+                                  // can let the
+                                  // DoFTools::make_sparsity_pattern
+                                  // function omit these entries by setting
+                                  // the last boolean flag to
+                                  // <code>false</code>. Once the sparsity
+                                  // pattern is ready, we can use it to
+                                  // initialize the Trilinos
+                                  // matrices. Since the Trilinos matrices
+                                  // store the sparsity pattern internally,
+                                  // there is no need to keep the sparsity
+                                  // pattern around after the
                                   // initialization of the matrix.
   stokes_block_sizes.resize (2);
   stokes_block_sizes[0] = n_u;
@@ -1196,7 +1198,7 @@ void BoussinesqFlowProblem<dim>::setup_dofs ()
   {
     stokes_matrix.clear ();
 
-    BlockCompressedSetSparsityPattern csp (2,2);
+    BlockCompressedSimpleSparsityPattern csp (2,2);
  
     csp.block(0,0).reinit (n_u, n_u);
     csp.block(0,1).reinit (n_u, n_p);
@@ -1225,7 +1227,7 @@ void BoussinesqFlowProblem<dim>::setup_dofs ()
     Mp_preconditioner.reset ();
     stokes_preconditioner_matrix.clear ();
 
-    BlockCompressedSetSparsityPattern csp (2,2);
+    BlockCompressedSimpleSparsityPattern csp (2,2);
  
     csp.block(0,0).reinit (n_u, n_u);
     csp.block(0,1).reinit (n_u, n_p);
@@ -1256,14 +1258,14 @@ void BoussinesqFlowProblem<dim>::setup_dofs ()
                                   // discretization) follows the generation
                                   // of the Stokes matrix &ndash; except
                                   // that it is much easier here since we
-                                  // do not need to take care of any
-                                  // blocks or coupling between components:
+                                  // do not need to take care of any blocks
+                                  // or coupling between components:
   {
     temperature_mass_matrix.clear ();
     temperature_stiffness_matrix.clear ();
     temperature_matrix.clear ();
 
-    CompressedSetSparsityPattern csp (n_T, n_T);      
+    CompressedSimpleSparsityPattern csp (n_T, n_T);      
     DoFTools::make_sparsity_pattern (temperature_dof_handler, csp,
                                     temperature_constraints, false);
 
index 20871d259a5cf5dca82702e6ef3236aa12eb696d..61d9629c1150e61711b3683381140005f38e15d7 100644 (file)
@@ -633,7 +633,7 @@ void BoussinesqFlowProblem<dim>::setup_dofs ()
   {
     stokes_matrix.clear ();
 
-    BlockCompressedSetSparsityPattern csp (2,2);
+    BlockCompressedSimpleSparsityPattern csp (2,2);
 
     csp.block(0,0).reinit (n_u, n_u);
     csp.block(0,1).reinit (n_u, n_p);
@@ -662,7 +662,7 @@ void BoussinesqFlowProblem<dim>::setup_dofs ()
     Mp_preconditioner.reset ();
     stokes_preconditioner_matrix.clear ();
 
-    BlockCompressedSetSparsityPattern csp (2,2);
+    BlockCompressedSimpleSparsityPattern csp (2,2);
 
     csp.block(0,0).reinit (n_u, n_u);
     csp.block(0,1).reinit (n_u, n_p);
@@ -697,7 +697,7 @@ void BoussinesqFlowProblem<dim>::setup_dofs ()
     temperature_stiffness_matrix.clear ();
     temperature_matrix.clear ();
 
-    CompressedSetSparsityPattern csp (n_T, n_T);
+    CompressedSimpleSparsityPattern csp (n_T, n_T);
     DoFTools::make_sparsity_pattern (temperature_dof_handler, csp,
                                     temperature_constraints, false);
 

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.