Vector<double> &cell_vector) const
{
// First we ask ``fe_v'' for the
- // shape gradients, shape values and
// quadrature weights,
const std::vector<double> &JxW = fe_v.get_JxW_values ();
Vector<double> &cell_vector) const
{
// Again, as in the previous
- // function, we ask the ``FEValues''
- // object for the shape values and
- // the quadrature weights
+ // function, we ask the
+ // ``FEValues'' object for the
+ // quadrature weights
const std::vector<double> &JxW = fe_v.get_JxW_values ();
// but here also for the normals.
const std::vector<Point<dim> > &normals = fe_v.get_normal_vectors ();
// on the face.
//
// In addition to the cell matrix
- // ``u_v_matrix'' this function has
- // got a new argument
- // ``un_v_matrix'', that stores
- // contributions to the system matrix
- // that are based on outer values of
- // u, see $\hat u_h$ in the
- // introduction, and inner values of
- // v, see $v_h$. Here we note that
- // ``un'' is the short notation for
- // ``u_neighbor'' and represents
- // $\hat u_h$.
+ // ``u_v_matrix'' this function gets
+ // a new argument ``un_v_matrix'',
+ // that stores contributions to the
+ // system matrix that are based on
+ // outer values of u, see $\hat u_h$
+ // in the introduction, and inner
+ // values of v, see $v_h$. Here we
+ // note that ``un'' is the short
+ // notation for ``u_neighbor'' and
+ // represents $\hat u_h$.
template <int dim>
void DGTransportEquation<dim>::assemble_face_term1(
const FEFaceValuesBase<dim>& fe_v,
{
// Again, as in the previous
// function, we ask the FEValues
- // objects for the shape values,
- // the quadrature weights and the
- // normals
+ // objects for the quadrature
+ // weights and the normals
const std::vector<double> &JxW = fe_v.get_JxW_values ();
const std::vector<Point<dim> > &normals = fe_v.get_normal_vectors ();