//@{
/**
- * Return the l1-norm of the matrix, that is
- * $|M|_1=max_{all columns j}\sum_{all
- * rows i} |M_ij|$,
- * (max. sum of columns).
- * This is the
- * natural matrix norm that is compatible
- * to the l1-norm for vectors, i.e.
+ * Return the $l_1$-norm of the matrix,
+ * that is $|M|_1=\max_{\mathrm{all\
+ * columns\ }j}\sum_{\mathrm{all\ rows\
+ * } i} |M_{ij}|$, (max. sum of
+ * columns). This is the natural
+ * matrix norm that is compatible to
+ * the $l_1$-norm for vectors, i.e.
* $|Mv|_1\leq |M|_1 |v|_1$.
- * (cf. Haemmerlin-Hoffmann : Numerische Mathematik)
+ * (cf. Haemmerlin-Hoffmann :
+ * Numerische Mathematik)
*/
real_type l1_norm () const;
/**
- * Return the linfty-norm of the
+ * Return the $l_\infty$-norm of the
* matrix, that is
- * $|M|_infty=max_{all rows i}\sum_{all
- * columns j} |M_ij|$,
- * (max. sum of rows).
- * This is the
- * natural matrix norm that is compatible
- * to the linfty-norm of vectors, i.e.
- * $|Mv|_infty \leq |M|_infty |v|_infty$.
- * (cf. Haemmerlin-Hoffmann : Numerische Mathematik)
+ * $|M|_\infty=\max_{\mathrm{all\ rows\
+ * }i}\sum_{\mathrm{all\ columns\ }j}
+ * |M_{ij}|$, (max. sum of rows). This
+ * is the natural matrix norm that is
+ * compatible to the $l_\infty$-norm of
+ * vectors, i.e. $|Mv|_\infty \leq
+ * |M|_\infty |v|_\infty$.
+ * (cf. Haemmerlin-Hoffmann :
+ * Numerische Mathematik)
*/
real_type linfty_norm () const;