]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Add a note on the equations.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Sat, 23 Apr 2011 00:52:09 +0000 (00:52 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Sat, 23 Apr 2011 00:52:09 +0000 (00:52 +0000)
git-svn-id: https://svn.dealii.org/trunk@23630 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-8/doc/intro.dox

index 87d8a0c0cf926a19ac072cf4a16e01cd7927f303..0e454a55d0254e364e5af627d1f629bcc6c85845 100644 (file)
@@ -83,8 +83,21 @@ or also writing the first term a sum over components:
   \right)_\Omega.
 @f]
 
+@note As written, the equations above are generally considered to be the right
+description for the displacement of three-dimensional objects if the
+displacement is small and we can assume that <a
+href="http://en.wikipedia.org/wiki/Hookes_law">Hooke's law</a> is valid. In
+that case, the indices $i,j,k,l$ above all run over the set $\{1,2,3\}$ (or,
+in the C++ source, over $\{0,1,2\}$). However, as is, the program runs in 2d,
+and while the equations above also make mathematical sense in that case, they
+would only describe a truly two-dimensional solid. In particular, they are not
+the appropriate description of an $x-y$ cross-section of a body infinite in
+the $z$ direction, as many other two-dimensional equations are. For a
+description of such cases, see for example the wikipedia article on <a
+href="http://en.wikipedia.org/wiki/Antiplane_shear">antiplane shear</a>.
 
-How do we now assemble the matrix for such an equation? A very long answer
+But let's get back to the original problem.
+How do we assemble the matrix for such an equation? A very long answer
 with a number of different alternatives is given in the documentation of the
 @ref vector_valued module. Historically, the solution shown below was the only
 one available in the early years of the library. It turns out to also be the

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.