E)^{\top}$ consisting of $\rho$ the fluid density, ${\mathbf v}=(v_1,\ldots v_d)^T$ the
flow velocity (and thus $\rho\mathbf v$ being the linear momentum
density), and
-$E$ the energy density of the gas. The flux matrix $\mathbf F$ (or system of flux functions)
+$E$ the energy density of the gas. We interpret the equations above as
+$\partial_t \mathbf{w}_i + \nabla \cdot \mathbf{F}_i(\mathbf{w}) = 0$, $i=1,\ldots,dim+2$.
+
+For the Euler equations, the flux matrix $\mathbf F$ (or system of flux functions)
is defined as (shown here for the case $d=3$)
@f{eqnarray*}
\mathbf F
=
\left(
\begin{array}{ccc}
- \rho v_1^2+p & \rho v_2v_1 & \rho v_3v_1 & \rho v_1 & (E+p)v_1 \\
- \rho v_1v_2 & \rho v_2^2+p & \rho v_3v_2 & \rho v_2 & (E+p)v_2 \\
- \rho v_1v_3 & \rho v_2v_3 & \rho v_3^2+p & \rho v_3 & (E+p)v_3
+ \rho v_1^2+p & \rho v_2v_1 & \rho v_3v_1 \\
+ \rho v_1v_2 & \rho v_2^2+p & \rho v_3v_2 \\
+ \rho v_1v_3 & \rho v_2v_3 & \rho v_3^2+p \\
+ \rho v_1 & \rho v_2 & \rho v_3 \\
+ (E+p) v_1 & (E+p) v_2 & (E+p) v_3
\end{array}
\right),
@f}