]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Some more minor edits.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Fri, 9 Oct 2009 00:59:02 +0000 (00:59 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Fri, 9 Oct 2009 00:59:02 +0000 (00:59 +0000)
git-svn-id: https://svn.dealii.org/trunk@19784 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-37/step-37.cc

index dab709010158e49028dca3770a1c2e45ce4e268b..7197b6c8e0e9d1f03b84c526534b5e68b6ae8c66 100644 (file)
@@ -488,7 +488,7 @@ local_vmult (CellChunkIterator                    cell_range,
                                   // specify that this should be done fast,
                                   // i.e., the field will not be initialized
                                   // since we fill them manually in the very
-                                  // next step second anyway. Then, we copy the
+                                  // next step anyway. Then, we copy the
                                   // source values from the global vector to
                                   // the local cell range, and we perform a
                                   // matrix-matrix product to transform the
@@ -533,7 +533,7 @@ local_vmult (CellChunkIterator                    cell_range,
                                   // simultaneously apply the constraints, we
                                   // hand this task off to the ConstraintMatrix
                                   // object. Most often, the ConstraintMatrix
-                                  // function is used to be applied to data
+                                  // function is applied to data
                                   // from one cell at a time, but since we work
                                   // on a whole chunk of dofs, we can feed the
                                   // function with data from all the cells at
@@ -625,40 +625,59 @@ MatrixFree<number,Transformation>::Tvmult_add (Vector<number2>       &dst,
 
 
                                 // This is the <code>vmult_add</code>
-                                // function that multiplies the matrix with
-                                // vector <code>src</code> and adds the
-                                // result to vector <code>dst</code>.  We
-                                // include a few sanity checks to make sure
-                                // that the size of the vectors is the same
-                                // as the dimension of the matrix. We call a
-                                // %parallel function that applies the
-                                // multiplication on a chunk of cells at once
-                                // using the WorkStream module (cf. also the
-                                // @ref threads module). The subdivision into
-                                // chunks will be performed in the reinit
-                                // function and is stored in the field
-                                // <code>matrix_sizes.chunks</code>. What the
-                                // rather cryptic command to
-                                // <code>std_cxx1x::bind</code> does is to
-                                // transform a function that has several
-                                // arguments (source vector, chunk
-                                // information) into a function which has no
-                                // arguments, which is what the
-                                // WorkStream::run function expects. The
-                                // placeholders <code>_1, _2, _3</code> in
-                                // the local vmult specify variable input
-                                // values, given by the chunk information,
-                                // scratch data and copy data. Similarly, the
+                                // function that multiplies the
+                                // matrix with vector
+                                // <code>src</code> and adds the
+                                // result to vector <code>dst</code>.
+                                // We include a few sanity checks to
+                                // make sure that the size of the
+                                // vectors is the same as the
+                                // dimension of the matrix. We call a
+                                // %parallel function that applies
+                                // the multiplication on a chunk of
+                                // cells at once using the WorkStream
+                                // module (cf. also the @ref threads
+                                // module). The subdivision into
+                                // chunks will be performed in the
+                                // reinit function and is stored in
+                                // the field
+                                // <code>matrix_sizes.chunks</code>. What
+                                // the rather cryptic command to
+                                // <code>std_cxx1x::bind</code> does
+                                // is to transform a function that
+                                // has several arguments (source
+                                // vector, chunk information) into a
+                                // function which has three arguments
+                                // (in the first case) or one
+                                // argument (in the second), which is
+                                // what the WorkStream::run function
+                                // expects. The placeholders
+                                // <code>_1, _2, _3</code> in the
+                                // local vmult specify variable input
+                                // values, given by the chunk
+                                // information, scratch data and copy
+                                // data that the WorkStream::run
+                                // function will provide, whereas the
+                                // other arguments to the
+                                // <code>local_vmult</code> function
+                                // are bound: to <code>this</code>
+                                // and a constant reference to the
+                                // <code>src</code> in the first
+                                // case, and <code>this</code> and a
+                                // reference to the output vector in
+                                // the second. Similarly, the
                                 // placeholder <code>_1</code> in the
-                                // <code>copy_local_to_global</code> function
-                                // sets the first argument of that function,
-                                // which is of class
+                                // <code>copy_local_to_global</code>
+                                // function sets the first explicit
+                                // argument of that function, which
+                                // is of class
                                 // <code>CopyData</code>. We need to
-                                // abstractly specify these arguments because
-                                // the tasks defined by different cell chunks
-                                // will be scheduled by the WorkStream class,
-                                // and we will reuse available scratch and
-                                // copy data.
+                                // abstractly specify these arguments
+                                // because the tasks defined by
+                                // different cell chunks will be
+                                // scheduled by the WorkStream class,
+                                // and we will reuse available
+                                // scratch and copy data.
 template <typename number, class Transformation>
 template <typename number2>
 void
@@ -679,21 +698,28 @@ MatrixFree<number,Transformation>::vmult_add (Vector<number2>       &dst,
                   WorkStreamData::CopyData<number>(),
                   2*multithread_info.n_default_threads,1);
 
-                                  // One thing to be cautious about: The
-                                  // deal.II classes expect that the matrix
-                                  // still contains a diagonal entry for
-                                  // constrained dofs (otherwise, the matrix
-                                  // would be singular, which is not what we
-                                  // want). Since the
+                                  // One thing to be cautious about:
+                                  // The deal.II classes expect that
+                                  // the matrix still contains a
+                                  // diagonal entry for constrained
+                                  // dofs (otherwise, the matrix
+                                  // would be singular, which is not
+                                  // what we want). Since the
                                   // <code>distribute_local_to_global</code>
-                                  // command of the constraint matrix which we
-                                  // used for adding the local elements into
-                                  // the global vector does not do anything
-                                  // with constrained elements, we have to
-                                  // circumvent that problem by artificially
-                                  // setting the diagonal to some non-zero
-                                  // value and adding the source values. We
-                                  // simply set it to one.
+                                  // command of the constraint matrix
+                                  // which we used for adding the
+                                  // local elements into the global
+                                  // vector does not do anything with
+                                  // constrained elements, we have to
+                                  // circumvent that problem by
+                                  // artificially setting the
+                                  // diagonal to some non-zero value
+                                  // and adding the source values. We
+                                  // simply set it to one, which
+                                  // corresponds to copying the
+                                  // respective elements of the
+                                  // source vector into the matching
+                                  // entry of the destination vector.
   for (unsigned int i=0; i<matrix_sizes.n_dofs; ++i)
     if (constraints.is_constrained(i) == true)
       dst(i) += 1.0 * src(i);
@@ -701,7 +727,7 @@ MatrixFree<number,Transformation>::vmult_add (Vector<number2>       &dst,
 
 
 
-                                // This function initializes the structures
+                                // The next function initializes the structures
                                 // of the matrix. It writes the number of
                                 // total degrees of freedom in the problem
                                 // as well as the number of cells to the
@@ -776,7 +802,7 @@ reinit (const unsigned int        n_dofs_in,
                                   // on quadrature points should not be more
                                   // than about a third of the cache size of
                                   // the processor in order to be on the safe
-                                  // side. Since most today's processors
+                                  // side. Since most of today's processors
                                   // provide 512 kB or more cache memory per
                                   // core, we choose about 150 kB as a size to
                                   // leave some room for other things to be
@@ -791,9 +817,8 @@ reinit (const unsigned int        n_dofs_in,
                                   // actual chunk size in order to evenly
                                   // distribute the chunks.
   const unsigned int divisor = 150000/(matrix_sizes.n*sizeof(double));
-  unsigned int n_chunks = matrix_sizes.n_cells/divisor + 1;
-  if (n_chunks<2*multithread_info.n_default_threads)
-    n_chunks = 2*multithread_info.n_default_threads;
+  const unsigned int n_chunks = std::max (matrix_sizes.n_cells/divisor + 1,
+                                         2*multithread_info.n_default_threads);
 
   const unsigned int chunk_size = (matrix_sizes.n_cells/n_chunks +
                                   (matrix_sizes.n_cells%n_chunks>0));
@@ -813,11 +838,11 @@ reinit (const unsigned int        n_dofs_in,
 
 
 
-                                // This function we need if we want to
+                                // Then we need a function if we want to
                                 // delete the content of the matrix,
                                 // e.g. when we are finished with one grid
                                 // level and continue to the next one. Just
-                                // put all the field sizes to 0.
+                                // set all the field sizes to 0.
 template <typename number, class Transformation>
 void
 MatrixFree<number,Transformation>::clear ()
@@ -838,7 +863,7 @@ MatrixFree<number,Transformation>::clear ()
 
 
 
-                                // This function returns the entries of the
+                                // The next function returns the entries of the
                                 // matrix. Since this class is intended not
                                 // to store the matrix entries, it would make
                                 // no sense to provide all those
@@ -868,7 +893,7 @@ MatrixFree<number,Transformation>::el (const unsigned int row,
                                 // remember that this is as simple (or
                                 // complicated) as assembling a right hand
                                 // side in deal.II. Well, it is a bit easier
-                                // to do this within this class since have
+                                // to do this within this class since we have
                                 // all the derivative information
                                 // available. What we do is to go through all
                                 // the cells (now in serial, since this
@@ -921,8 +946,8 @@ MatrixFree<number,Transformation>::calculate_diagonal() const
                                 // and with data type <code>double</code>,
                                 // about 80 per cent of the memory
                                 // consumption is due to the
-                                // <code>derivatives</code> array, in 3D
-                                // even 85 per cent.
+                                // <code>derivatives</code> array, while in 3D
+                                // this number is even 85 per cent.
 template <typename number, class Transformation>
 std::size_t MatrixFree<number,Transformation>::memory_consumption () const
 {
@@ -1001,9 +1026,9 @@ LaplaceOperator<dim,number>::LaplaceOperator(const Tensor<2,dim> &tensor)
 }
 
                                 // Now implement the transformation, which is
-                                // nothing else than a so-called contract
-                                // operation of a tensor of second rank on a
-                                // tensor of first rank. Unfortunately, we
+                                // just a so-called contraction
+                                // operation between a tensor of rank two and a
+                                // tensor of rank one. Unfortunately, we
                                 // need to implement this by hand, since we
                                 // chose not to use the
                                 // SymmetricTensor<2,dim> class (note that
@@ -1017,7 +1042,7 @@ LaplaceOperator<dim,number>::LaplaceOperator(const Tensor<2,dim> &tensor)
                                 // the loop in the <code>vmult</code>
                                 // operation of the MatrixFree class. We need
                                 // to pay attention to the fact that we only
-                                // saved half the (symmetric) rank-two
+                                // saved half of the (symmetric) rank-two
                                 // tensor.
                                 //
                                 // At first sight, it seems inefficient that
@@ -1054,14 +1079,18 @@ void LaplaceOperator<dim,number>::transform (number* result) const
     ExcNotImplemented();
 }
 
-                                // This function takes the content of a
-                                // rank-2 tensor and writes it to the field
-                                // <code>transformation</code> of this
-                                // class. We save the upper part of the
-                                // symmetric tensor row-wise: we first take
-                                // the (0,0)-entry, then the (0,1)-entry,
-                                // and so on. We only implement this for
-                                // dimensions two and three.
+                                // The final function in this group
+                                // takes the content of a rank-2
+                                // tensor and writes it to the field
+                                // <code>transformation</code> of
+                                // this class. We save the upper part
+                                // of the symmetric tensor row-wise:
+                                // we first take the (0,0)-entry,
+                                // then the (0,1)-entry, and so
+                                // on. We only implement this for
+                                // dimensions two and three, which
+                                // for the moment should do just
+                                // fine:
 template <int dim, typename number>
 LaplaceOperator<dim,number>&
 LaplaceOperator<dim,number>::operator=(const Tensor<2,dim> &tensor)
@@ -1098,11 +1127,13 @@ LaplaceOperator<dim,number>::operator=(const Tensor<2,dim> &tensor)
 
                                 // @sect3{LaplaceProblem class}
 
-                                // This class is based on the same class in
-                                // step-16. We replaced the
-                                // SparseMatrix<double> class by our
-                                // matrix-free implementation, which means
-                                // that we can skip the sparsity patterns.
+                                // This class is based on the same
+                                // class in step-16. However, we
+                                // replaced the SparseMatrix<double>
+                                // class by our matrix-free
+                                // implementation, which means that
+                                // we can also skip the sparsity
+                                // patterns.
 template <int dim>
 class LaplaceProblem
 {
@@ -1133,7 +1164,8 @@ class LaplaceProblem
 
 
 template <int dim>
-LaplaceProblem<dim>::LaplaceProblem (const unsigned int degree) :
+LaplaceProblem<dim>::LaplaceProblem (const unsigned int degree)
+               :
                 fe (degree),
                mg_dof_handler (triangulation)
 {}
@@ -1206,14 +1238,14 @@ void LaplaceProblem<dim>::setup_system ()
   system_matrix.get_constraints().close();
   std::cout.precision(4);
   std::cout << "System matrix memory consumption: "
-           << (double)system_matrix.memory_consumption()*std::pow(2.,-20.)
+           << system_matrix.memory_consumption()/std::pow(2.,20.)
            << " MBytes."
            << std::endl;
 
   solution.reinit (mg_dof_handler.n_dofs());
   system_rhs.reinit (mg_dof_handler.n_dofs());
 
-                                  // Initialize the matrices for the
+                                  // Next, initialize the matrices for the
                                   // multigrid method on all the
                                   // levels. Unfortunately, the function
                                   // MGTools::make_boundary_list cannot write
@@ -1342,10 +1374,10 @@ void LaplaceProblem<dim>::assemble_system ()
                                 // calculate the matrix on the coarsest
                                 // level. In step-16, we could simply copy
                                 // the entries from the respective sparse
-                                // matrix, what is obviously not possible
-                                // here. We could have integrated this to the
+                                // matrix, but this is obviously not possible
+                                // here. We could have integrated this into the
                                 // MatrixFree class as well, but it is simple
-                                // anyway, so calculate it here instead.
+                                // enough, so calculate it here instead.
 template <int dim>
 void LaplaceProblem<dim>::assemble_multigrid ()
 {
@@ -1402,11 +1434,13 @@ void LaplaceProblem<dim>::assemble_multigrid ()
        }
     }
 
-                                  // Here, we need to condense the boundary
-                                  // conditions on the coarse matrix. There
-                                  // is no built-in function for doing this
-                                  // on a full matrix, so manually delete the
-                                  // rows and columns of the matrix that are
+                                  // In a final step, we need to
+                                  // condense the boundary conditions
+                                  // on the coarse matrix. There is
+                                  // no built-in function for doing
+                                  // this on a full matrix, so
+                                  // manually delete the rows and
+                                  // columns of the matrix that are
                                   // constrained.
   for (unsigned int i=0; i<coarse_matrix.m(); ++i)
     if (mg_matrices[0].get_constraints().is_constrained(i))
@@ -1426,8 +1460,8 @@ void LaplaceProblem<dim>::assemble_multigrid ()
                                 // step-16. We now use a Chebyshev smoother
                                 // instead of SOR (SOR would be very
                                 // difficult to implement because we do not
-                                // have the matrix elements explicitly
-                                // available, and it is difficult to make it
+                                // have the matrix elements available
+                                // explicitly, and it is difficult to make it
                                 // work efficiently in %parallel). The
                                 // multigrid classes provide a simple
                                 // interface for using the Chebyshev smoother
@@ -1448,20 +1482,27 @@ void LaplaceProblem<dim>::solve ()
   MGSmootherPrecondition<MatrixFreeType, SMOOTHER, Vector<double> >
     mg_smoother(vector_memory);
 
-                                  // Initialize the smoother with our level
-                                  // matrices and the required, additional
-                                  // data for the Chebyshev smoother. Use a
-                                  // higher polynomial degree for higher
-                                  // order elements, since smoothing gets
-                                  // more difficult then. Smooth out a range
-                                  // of
+                                  // Then, we initialize the smoother
+                                  // with our level matrices and the
+                                  // required, additional data for
+                                  // the Chebyshev smoother. In
+                                  // particular, we use a higher
+                                  // polynomial degree for higher
+                                  // order elements, since smoothing
+                                  // gets more difficult for
+                                  // these. Smooth out a range of
                                   // $[\lambda_{\max}/10,\lambda_{\max}]$. In
-                                  // order to compute the maximum eigenvalue
-                                  // of the corresponding matrix, the
-                                  // Chebyshev initializations performs a few
-                                  // steps of a CG algorithm. Since all we
-                                  // need is a rough estimate, we choose some
-                                  // eight iterations.
+                                  // order to compute the maximum
+                                  // eigenvalue of the corresponding
+                                  // matrix, the Chebyshev
+                                  // initializations performs a few
+                                  // steps of a CG algorithm. Since
+                                  // all we need is a rough estimate,
+                                  // we choose some eight iterations
+                                  // (more if the finite element
+                                  // polynomial degree is larger,
+                                  // less if it is smaller than
+                                  // quadratic).
   typename SMOOTHER::AdditionalData smoother_data;
   smoother_data.smoothing_range = 10.;
   smoother_data.degree = fe.degree;
@@ -1493,23 +1534,23 @@ void LaplaceProblem<dim>::solve ()
                                 // compared to step-16. The magic is all
                                 // hidden behind the implementation of
                                 // the MatrixFree::vmult operation.
-double multigrid_memory =
-  (double)mg_matrices.memory_consumption() +
-  (double)mg_transfer.memory_consumption() +
-  (double)coarse_matrix.memory_consumption();
-std::cout << "Multigrid objects memory consumption: "
-<< multigrid_memory*std::pow(2.,-20.)
-<< " MBytes."
-<< std::endl;
-
-SolverControl           solver_control (1000, 1e-12);
-SolverCG<>              cg (solver_control);
-
-cg.solve (system_matrix, solution, system_rhs,
-         preconditioner);
-
-std::cout << "Convergence in " << solver_control.last_step()
-<< " CG iterations." << std::endl;
+  const unsigned int multigrid_memory
+    = (mg_matrices.memory_consumption() +
+       mg_transfer.memory_consumption() +
+       coarse_matrix.memory_consumption());
+  std::cout << "Multigrid objects memory consumption: "
+           << multigrid_memory/std::pow(2.,20.)
+           << " MBytes."
+           << std::endl;
+
+  SolverControl           solver_control (1000, 1e-12);
+  SolverCG<>              cg (solver_control);
+
+  cg.solve (system_matrix, solution, system_rhs,
+           preconditioner);
+
+  std::cout << "Convergence in " << solver_control.last_step()
+           << " CG iterations." << std::endl;
 }
 
 
@@ -1517,7 +1558,7 @@ std::cout << "Convergence in " << solver_control.last_step()
                                 // @sect4{LaplaceProblem::output_results}
 
                                 // Here is the data output, which is a
-                                // simplified version of step-5. We use a
+                                // simplified version of step-5. We use the
                                 // standard VTK output for each grid
                                 // produced in the refinement process.
 template <int dim>

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.