]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Made integration clearer
authorLuca Heltai <luca.heltai@sissa.it>
Sat, 18 Apr 2009 11:01:11 +0000 (11:01 +0000)
committerLuca Heltai <luca.heltai@sissa.it>
Sat, 18 Apr 2009 11:01:11 +0000 (11:01 +0000)
git-svn-id: https://svn.dealii.org/trunk@18646 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-34/step-34.cc

index 484670cb008bd3e323bd1d8e058b56d079a952c5..aa2143ca2f58d04b0090f0a6354f372981bcd860 100644 (file)
@@ -78,135 +78,40 @@ using namespace dealii;
                                 // the vector $R =
                                 // \mathbf{y}-\mathbf{x}$ is
                                 // different from zero.
-                                // 
-                                // Whenever the integration is
-                                // performed with the singularity
-                                // inside the given cell, then a
-                                // special quadrature formula is used
-                                // that allows one to integrate
-                                // arbitrary functions against a
-                                // singular weight on the reference
-                                // cell.  There are two options when
-                                // the integral is singular. One
-                                // could take into account the
-                                // singularity inside the quadrature
-                                // formula as a weigthing function,
-                                // or one could use a quadrature
-                                // formula that is taylored to
-                                // integrate singular objects, but
-                                // where the actual weighting
-                                // function is one. The use of the
-                                // first method requires the user to
-                                // provide "desingularized" single
-                                // and double layer potentials which
-                                // can then be integrated on the
-                                // given cell. When the @p
-                                // factor_out_singularity parameter
-                                // is set to true, then the computed
-                                // kernels do not conatain the
-                                // singular factor, which is included
-                                // in the quadrature formulas as a
-                                // weighting function. This works
-                                // best in two dimension, where the
-                                // singular integrals are integrals
-                                // along a segment of a logarithmic
-                                // singularity.
-                                //
-//TODO: Can you elaborate in formulas?
-                                // These integrals are somewhat
-                                // delicate, because inserting a
-                                // factor Jx in the variable of
-                                // integration does not result only
-                                // in a factor J appearing as a
-                                // constant factor on the entire
-                                // integral, but also on an
-                                // additional integral to be added,
-                                // that contains the logarithm of
-                                // J. For this reason in two
-                                // dimensions we opt for the
-                                // desingularized kernel, and use the
-                                // QGaussLogR quadrature formula,
-                                // that takes care of integrating the
-                                // correct weight for us.
-                                //
-                                // In the three dimensional case the
-                                // singular integral is taken care of
-                                // using the QGaussOneOverR
-                                // quadrature formula. We could use
-                                // the desingularized kernel here as
-                                // well, but this would require us to
-                                // be careful about the different
-                                // scaling of $r$ in the reference
-                                // cell and in real space. The
-                                // quadrature formula uses as weight
-                                // $1/r$ in local coordinates, while
-                                // we need to integrate $1/R$ in real
-                                // coordinates. A factor of $r/R$ has
-                                // to be introduced in the quadrature
-                                // formula. This can be done
-                                // manually, or we simply calculate
-                                // the standard kernels and then use
-                                // a desingularized quadrature
-                                // formula, i.e., one which is
-                                // taylored for singular integrals,
-                                // but whose weight is 1 instead of
-                                // the singularity.
-                                //
-                                // Notice that the QGaussLog
-                                // quadrature formula is made to
-                                // integrate $f(x)\ln
-                                // |\mathbf{x}-\mathbf{x}_0|$, but
-                                // the kernel for two dimensional
-                                // problems has the opposite
-                                // sign. This is taken care of by
-                                // switching the sign of the two
-                                // dimensional desingularized kernel.
-                                //
-                                // The last argument to both
-                                // functions is simply ignored in
-                                // three dimensions.
 namespace LaplaceKernel
 {
   template <int dim>
-  double single_layer(const Point<dim> &R, 
-                     const bool factor_out_2d_singularity = false)
+  double single_layer(const Point<dim> &R)
   {
     switch(dim)
       {
        case 2:
-             if (factor_out_2d_singularity == true) 
-               return -1./(2*numbers::PI);
-             else
-               return (-std::log(R.norm()) / (2*numbers::PI) );
+           return (-std::log(R.norm()) / (2*numbers::PI) );
 
        case 3:
-             return (1./( R.norm()*4*numbers::PI ) );
+           return (1./( R.norm()*4*numbers::PI ) );
 
        default:
-             Assert(false, ExcInternalError());
-             return 0.;
+           Assert(false, ExcInternalError());
+           return 0.;
       }
   }
         
 
 
   template <int dim>
-  Point<dim> double_layer(const Point<dim> &R,
-                         const bool factor_out_2d_singularity = false)
+  Point<dim> double_layer(const Point<dim> &R)
   {
     switch(dim)
       {
        case 2:
-             if (factor_out_2d_singularity)
-               return Point<dim>();
-             else
-               return R / (-2*numbers::PI * R.square());
+           return R / ( -2*numbers::PI * R.square());
        case 3:
-             return R / ( -4*numbers::PI * R.square()*R.norm() );
+           return R / ( -4*numbers::PI * R.square()*R.norm() );
 
        default:
-             Assert(false, ExcInternalError());
-             return Point<dim>();
+           Assert(false, ExcInternalError());
+           return Point<dim>();
       }
   }
 }
@@ -452,10 +357,10 @@ class BEMProblem
                                     // well as a vector that will
                                     // hold the values of
                                     // $\alpha(\mathbf x)$ (the
-                                    // fraction of space visible from
-                                    // a point $\mathbf x$) at the
-                                    // support points of our shape
-                                    // functions.
+                                    // fraction of $\Omega$ visible
+                                    // from a point $\mathbf x$) at
+                                    // the support points of our
+                                    // shape functions.
     Vector<double>              phi;
     Vector<double>              alpha;
     
@@ -1031,65 +936,189 @@ void BEMProblem<dim>::assemble_system()
                }
            } else {
                                             // Now we treat the more
-                                            // delicate case. If we are
-                                            // here, this means that the
-                                            // cell that runs on the $j$
-                                            // index contains
-                                            // support_point[i]. In this
-                                            // case both the single and
-                                            // the double layer potential
-                                            // are singular, and they
-                                            // require special treatment,
-                                            // as explained in the
-                                            // introduction.
+                                            // delicate case. If we
+                                            // are here, this means
+                                            // that the cell that
+                                            // runs on the $j$ index
+                                            // contains
+                                            // support_point[i]. In
+                                            // this case both the
+                                            // single and the double
+                                            // layer potential are
+                                            // singular, and they
+                                            // require special
+                                            // treatment.
                                             //
-                                            // In the two dimensional
-                                            // case we perform the
-                                            // integration using a
-                                            // QGaussLogR quadrature
-                                            // formula, which is
-                                            // specifically designed to
-                                            // integrate logarithmic
-                                            // singularities on the unit
-                                            // interval, while in three
-                                            // dimensions we use the
-                                            // QGaussOneOverR class,
-                                            // which allows us to
-                                            // integrate 1/R
-                                            // singularities on the
-                                            // vertices of the reference
-                                            // element. Since we don't
-                                            // want to rebuild the two
-                                            // dimensional quadrature
-                                            // formula at each singular
-                                            // integration, we have built
-                                            // them outside the loop on
-                                            // the cells, and we only use
-                                            // a pointer to that
-                                            // quadrature here.
+                                            // Whenever the
+                                            // integration is
+                                            // performed with the
+                                            // singularity inside the
+                                            // given cell, then a
+                                            // special quadrature
+                                            // formula is used that
+                                            // allows one to
+                                            // integrate arbitrary
+                                            // functions against a
+                                            // singular weight on the
+                                            // reference cell.
+                                            //
+                                            // Notice that singular
+                                            // integration requires a
+                                            // careful selection of
+                                            // the quadrature
+                                            // rules. In particular
+                                            // the deal.II library
+                                            // provides quadrature
+                                            // rules which are
+                                            // taylored for
+                                            // logarithmic
+                                            // singularities
+                                            // (QGaussLog,
+                                            // QGaussLogR), as well
+                                            // as for 1/R
+                                            // singularities
+                                            // (QGaussOneOverR).
+                                            //
+                                            // Singular integration
+                                            // is typically obtained
+                                            // by constructing
+                                            // weighted quadrature
+                                            // formulas with singular
+                                            // weights, so that it is
+                                            // possible to write
+                                            //
+                                            // \f[
+                                            //   \int_K f(x) s(x) dx = \Sum_{i=1}^N w_i f(q_i)
+                                            // \f]
+                                            //
+                                            // where $s(x)$ is a
+                                            // given singularity.
+                                            //
+                                            // In all the finite
+                                            // element examples we
+                                            // have seen so far, the
+                                            // weight of the
+                                            // quadrature itself
+                                            // (namely, the function
+                                            // $s(x)$), was always
+                                            // constantly equal to 1.
+                                            //
+                                            // For singular
+                                            // integration, we have
+                                            // two choices: we can
+                                            // use the definition
+                                            // above, factoring out
+                                            // the singularity from
+                                            // the integrand (i.e.,
+                                            // integrating $f(x)$
+                                            // with the special
+                                            // quadrature rule), or
+                                            // we can ask the
+                                            // quadrature rule to
+                                            // "normalize" the
+                                            // weights $w_i$ with
+                                            // $s(q_i)$:
+                                            //
+                                            // \f[
+                                            //   \int_K f(x) s(x) dx =
+                                            //   \int_K g(x) dx = \Sum_{i=1}^N \frac{w_i}{s(q_i)} g(q_i)
+                                            // \f]
+                                            //
+                                            // We use this second
+                                            // option, through the @p
+                                            // factor_out_singularity
+                                            // parameter of both
+                                            // QGaussLogR and
+                                            // QGaussOneOverR.
+                                            //
+                                            // These integrals are
+                                            // somewhat delicate,
+                                            // especially in two
+                                            // dimensions, due to the
+                                            // transformation from
+                                            // the real to the
+                                            // reference cell, where
+                                            // the variable of
+                                            // integration is scaled
+                                            // with the determinant
+                                            // of the transformation.
+                                            //
+                                            // In two dimensions this
+                                            // process does not
+                                            // result only in a
+                                            // factor appearing as a
+                                            // constant factor on the
+                                            // entire integral, but
+                                            // also on an additional
+                                            // integral alltogether
+                                            // that needs to be
+                                            // evaluated:
+                                            // 
+                                            // \f[
+                                            //  \int_0^1 f(x)\ln(x/\alpha) dx =
+                                            //  \int_0^1 f(x)\ln(x) dx - \int_0^1 f(x) \ln(\alpha) dx.
+                                            // \f]
+                                            //
+                                            // This process is taken care of by
+                                            // the constructor of the QGaussLogR
+                                            // class, which adds additional
+                                            // quadrature points and weights to
+                                            // take into consideration also the
+                                            // second part of the integral.
+                                            // 
+                                            // A similar reasoning
+                                            // should be done in the
+                                            // three dimensional
+                                            // case, since the
+                                            // singular quadrature is
+                                            // taylored on the
+                                            // inverse of the radius
+                                            // $r$ in the reference
+                                            // cell, while our
+                                            // singular function
+                                            // lives in real space,
+                                            // however in the three
+                                            // dimensional case
+                                            // everything is simpler
+                                            // because the
+                                            // singularity scales
+                                            // linearly with the
+                                            // determinant of the
+                                            // transformation. This
+                                            // allows us to built the
+                                            // singular two
+                                            // dimensional quadrature
+                                            // rules once and for all
+                                            // outside the loop on
+                                            // the cells, using only
+                                            // a pointer where needed.
                                             //
                                             // Notice that in one
-                                            // dimensional integration
-                                            // this is not possible,
-                                            // since we need to know the
-                                            // scaling parameter for the
-                                            // quadrature, which is not
-                                            // known a priori. Here, the
-                                            // singular quadrature rule
-                                            // depends also on the size
-                                            // of the current cell. For
-                                            // this reason, it is
-                                            // necessary to create a new
+                                            // dimensional
+                                            // integration this is
+                                            // not possible, since we
+                                            // need to know the
+                                            // scaling parameter for
+                                            // the quadrature, which
+                                            // is not known a
+                                            // priori. Here, the
+                                            // quadrature rule itself
+                                            // depends also on the
+                                            // size of the current
+                                            // cell. For this reason,
+                                            // it is necessary to
+                                            // create a new
                                             // quadrature for each
                                             // singular
                                             // integration. Since we
-                                            // create it using the new
-                                            // operator of C++, we also
-                                            // need to destroy it using
-                                            // the dual of new:
-                                            // delete. This is done at
-                                            // the end, and only if dim
-                                            // == 2.
+                                            // create it using the
+                                            // new operator of C++,
+                                            // we also need to
+                                            // destroy it using the
+                                            // dual of new:
+                                            // delete. This is done
+                                            // at the end, and only
+                                            // if dim == 2.
                                             //
                                             // Putting all this into a
                                             // dimension independent
@@ -1124,7 +1153,7 @@ void BEMProblem<dim>::assemble_system()
                 dynamic_cast<Quadrature<dim-1>*>(
                   new QGaussLogR<1>(singular_quadrature_order,
                                     Point<1>((double)singular_index),
-                                    1./cell->measure()))
+                                    1./cell->measure(), true))
                 :
                 (dim == 3
                  ?
@@ -1158,15 +1187,15 @@ void BEMProblem<dim>::assemble_system()
                  normal_wind += (singular_cell_wind[q](d)*
                                  singular_normals[q][d]);
                         
-               system_rhs(i) += ( LaplaceKernel::single_layer(R, is_singular) *
+               system_rhs(i) += ( LaplaceKernel::single_layer(R) *
                                   normal_wind                         *
                                   fe_v_singular.JxW(q) );
                         
                for(unsigned int j=0; j<fe.dofs_per_cell; ++j) {
-                 local_matrix_row_i(j) += (( LaplaceKernel::double_layer(R, is_singular) *
-                                             singular_normals[q])                *
-                                           fe_v_singular.shape_value(j,q)        *
-                                           fe_v_singular.JxW(q)       );
+                   local_matrix_row_i(j) += (( LaplaceKernel::double_layer(R) *
+                                               singular_normals[q])                *
+                                             fe_v_singular.shape_value(j,q)        *
+                                             fe_v_singular.JxW(q)       );
                }
              }
            if(dim==2) 

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.