]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Mostly finish. Give playground to work on.
authorwolf <wolf@0785d39b-7218-0410-832d-ea1e28bc413d>
Thu, 25 Apr 2002 07:24:22 +0000 (07:24 +0000)
committerwolf <wolf@0785d39b-7218-0410-832d-ea1e28bc413d>
Thu, 25 Apr 2002 07:24:22 +0000 (07:24 +0000)
git-svn-id: https://svn.dealii.org/trunk@5733 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-14/step-14.cc

index c76ac8618709044fe0fdfac1955e1925ecd00077..78fecea409eed8f435f7a58c75e12a275672e089 100644 (file)
@@ -1011,6 +1011,7 @@ namespace LaplaceSolver
       RefinementGlobal (Triangulation<dim>       &coarse_grid,
                        const FiniteElement<dim> &fe,
                        const Quadrature<dim>    &quadrature,
+                       const Quadrature<dim-1>  &face_quadrature,
                        const Function<dim>      &rhs_function,
                        const Function<dim>      &boundary_values);
 
@@ -1024,12 +1025,14 @@ namespace LaplaceSolver
   RefinementGlobal (Triangulation<dim>       &coarse_grid,
                    const FiniteElement<dim> &fe,
                    const Quadrature<dim>    &quadrature,
+                   const Quadrature<dim-1>  &face_quadrature,
                    const Function<dim>      &rhs_function,
                    const Function<dim>      &boundary_values)
                  :
                  Base<dim> (coarse_grid),
                   PrimalSolver<dim> (coarse_grid, fe, quadrature,
-                                    rhs_function, boundary_values)
+                                    face_quadrature, rhs_function,
+                                    boundary_values)
   {};
 
 
@@ -1092,6 +1095,128 @@ namespace LaplaceSolver
     triangulation->execute_coarsening_and_refinement ();
   };
 
+
+
+                                  // @sect4{The RefinementWeightedKelly class}
+
+                                  // This class is a variant of the
+                                  // previous one, in that it allows
+                                  // to weight the refinement
+                                  // indicators we get from the
+                                  // library's Kelly indicator by
+                                  // some function. We include this
+                                  // class since the goal of this
+                                  // example program is to
+                                  // demonstrate automatic refinement
+                                  // criteria even for complex output
+                                  // quantities such as point values
+                                  // or stresses. If we did not solve
+                                  // a dual problem and compute the
+                                  // weights thereof, we would
+                                  // probably be tempted to give a
+                                  // hand-crafted weighting to the
+                                  // indicators to account for the
+                                  // fact that we are going to
+                                  // evaluate these quantities. This
+                                  // class implements such a weight,
+                                  // and should serve as basis for
+                                  // further experiments.
+  template <int dim>
+  class RefinementWeightedKelly : public PrimalSolver<dim>
+  {
+    public:
+      RefinementWeightedKelly (Triangulation<dim>       &coarse_grid,
+                              const FiniteElement<dim> &fe,
+                              const Quadrature<dim>    &quadrature,
+                              const Quadrature<dim-1>  &face_quadrature,
+                              const Function<dim>      &rhs_function,
+                              const Function<dim>      &boundary_values);
+
+      virtual void refine_grid ();
+  };
+
+
+
+  template <int dim>
+  RefinementWeightedKelly<dim>::
+  RefinementWeightedKelly (Triangulation<dim>       &coarse_grid,
+                          const FiniteElement<dim> &fe,
+                          const Quadrature<dim>    &quadrature,
+                          const Quadrature<dim-1>  &face_quadrature,
+                          const Function<dim>      &rhs_function,
+                          const Function<dim>      &boundary_values)
+                 :
+                 Base<dim> (coarse_grid),
+                  PrimalSolver<dim> (coarse_grid, fe, quadrature,
+                                    face_quadrature,
+                                    rhs_function, boundary_values)
+  {};
+
+
+
+                                  // Now, here comes the main
+                                  // function, including the
+                                  // weighting:
+  template <int dim>
+  void
+  RefinementWeightedKelly<dim>::refine_grid ()
+  {
+                                    // First compute some residual
+                                    // based error indicators for all
+                                    // cells by a method already
+                                    // implemented in the
+                                    // library. What exactly is
+                                    // computed can be read in the
+                                    // documentation of that class.
+    Vector<float> estimated_error (triangulation->n_active_cells());
+    KellyErrorEstimator<dim>::estimate (dof_handler,
+                                       *face_quadrature,
+                                       typename FunctionMap<dim>::type(),
+                                       solution,
+                                       estimated_error);
+
+                                    // Now we are going to weight
+                                    // these indicators by some
+                                    // function that you might want
+                                    // to change:
+    typename DoFHandler<dim>::active_cell_iterator
+      cell = dof_handler.begin_active(),
+      endc = dof_handler.end();
+    for (unsigned int cell_index=0; cell!=endc; ++cell, ++cell_index)
+      {
+                                        // First we compute the
+                                        // coordinates and mesh size
+                                        // of this cell. To use the
+                                        // mesh size, remove the
+                                        // comment signs, the line
+                                        // is only commented out to
+                                        // avoid warnings by the
+                                        // compiler.
+       const double x = cell->center()(0); 
+       const double y = cell->center()(1); 
+/*     const double h = cell->diameter();  */
+
+                                        // From this we compute the
+                                        // weight with which we'd
+                                        // like to multiply the
+                                        // precomputed indicator. My
+                                        // default is boring but
+                                        // efficient. Do it better!
+       const double weight = 1./((x-0.75)*(x-0.75)+
+                                 (y-0.75)*(y-0.75) +
+                                 (0.1*0.1));
+
+                                        // Finally use this weight:
+       estimated_error(cell_index) *= weight;
+      };
+    
+    
+    GridRefinement::refine_and_coarsen_fixed_number (*triangulation,
+                                                    estimated_error,
+                                                    0.3, 0.03);
+    triangulation->execute_coarsening_and_refinement ();
+  };
+
 };
 
 
@@ -1610,8 +1735,8 @@ namespace Data
                                     // And since we want that the
                                     // evaluation point (3/4,3/4) in
                                     // this example is a grid point,
-                                    // we refine twice globally:
-    coarse_grid.refine_global (4);
+                                    // we refine once globally:
+    coarse_grid.refine_global (1);
   };
 };
 
@@ -1707,9 +1832,37 @@ namespace Data
                                 // with the rest of the program.
 
 
-                                //TODO
+                                // @sect3{Dual functionals}
+
+                                // As with the other components of
+                                // the program, we put everything we
+                                // need to describe dual functionals
+                                // into a namespace of its own, and
+                                // define an abstract base class that
+                                // provides the interface the class
+                                // solving the dual problem needs for
+                                // its work.
+                                //
+                                // We will then implement two such
+                                // classes, for the evaluation of a
+                                // point value and of the derivative
+                                // of the solution at that point. For
+                                // these functionals we already have
+                                // the corresponding evaluation
+                                // objects, so they are comlementary.
 namespace DualFunctional
 {
+                                  // @sect4{The DualFunctionalBase class}
+  
+                                  // First start with the base class
+                                  // for dual functionals. Since for
+                                  // linear problems the
+                                  // characteristics of the dual
+                                  // problem play a role only in the
+                                  // right hand side, we only need to
+                                  // provide for a function that
+                                  // assembles the right hand side
+                                  // for a given discretization:
   template <int dim>
   class DualFunctionalBase : public Subscriptor
   {
@@ -1721,6 +1874,19 @@ namespace DualFunctional
   };
 
 
+                                  // @sect4{The PointValueEvaluation class}
+  
+                                  // As a first application, we
+                                  // consider the functional
+                                  // corresponding to the evaluation
+                                  // of the solution's value at a
+                                  // given point which again we
+                                  // assume to be a vertex. Apart
+                                  // from the constructor that takes
+                                  // and stores the evaluation point,
+                                  // this class consists only of the
+                                  // function that implements
+                                  // assembling the right hand side.
   template <int dim>
   class PointValueEvaluation : public DualFunctionalBase<dim>
   {
@@ -1731,6 +1897,7 @@ namespace DualFunctional
       void
       assemble_rhs (const DoFHandler<dim> &dof_handler,
                    Vector<double>        &rhs) const;
+      
       DeclException1 (ExcEvaluationPointNotFound,
                      Point<dim>,
                      << "The evaluation point " << arg1
@@ -1749,46 +1916,93 @@ namespace DualFunctional
   {};
   
 
+                                  // As for doing the main purpose of
+                                  // the class, assembling the right
+                                  // hand side, let us first consider
+                                  // what is necessary: The right
+                                  // hand side of the dual problem is
+                                  // a vector of values J(phi_i),
+                                  // where J is the error functional,
+                                  // and phi_i is the i-th shape
+                                  // function. Here, J is the
+                                  // evaluation at the point x0,
+                                  // i.e. J(phi_i)=phi_i(x0).
+                                  //
+                                  // Now, we have assumed that the
+                                  // evaluation point is a
+                                  // vertex. Thus, for the usual
+                                  // finite elements we might be
+                                  // using in this program, we can
+                                  // take for granted that at such a
+                                  // point exactly one shape function
+                                  // is nonzero, and in particular
+                                  // has the value one. Thus, we set
+                                  // the right hand side vector to
+                                  // all-zeros, then seek for the
+                                  // shape function associated with
+                                  // that point and set the
+                                  // corresponding value of the right
+                                  // hand side vector to one:
   template <int dim>
   void
   PointValueEvaluation<dim>::
   assemble_rhs (const DoFHandler<dim> &dof_handler,
                Vector<double>        &rhs) const
   {
+                                    // So, first set everything to
+                                    // zeros...
     rhs.reinit (dof_handler.n_dofs());
+
+                                    // ...then loop over cells and
+                                    // find the evaluation point
+                                    // among the vertices:
     typename DoFHandler<dim>::active_cell_iterator
       cell = dof_handler.begin_active(),
       endc = dof_handler.end();
-    bool evaluation_point_found = false;
     for (; (cell!=endc) && !evaluation_point_found; ++cell)
       for (unsigned int vertex=0;
           vertex<GeometryInfo<dim>::vertices_per_cell;
           ++vertex)
        if (cell->vertex(vertex) == evaluation_point)
          {
+                                            // Ok, found, so set
+                                            // corresponding entry,
+                                            // and leave function
+                                            // since we are finished:
            rhs(cell->vertex_dof_index(vertex,0)) = 1;
-
-           evaluation_point_found = true;
-           break;
+           return;
          };
 
-    AssertThrow (evaluation_point_found,
-                ExcEvaluationPointNotFound(evaluation_point));
+                                    // Finally, a sanity check: if we
+                                    // somehow got here, then we must
+                                    // have missed the evaluation
+                                    // point, so raise an exception
+                                    // unconditionally:
+    AssertThrow (false, ExcEvaluationPointNotFound(evaluation_point));
   };
 
 
-
+                                  // @sect4{The PointValueEvaluation class}
+  
+                                  // As second application, we again
+                                  // consider the evaluation of the
+                                  // x-derivative of the solution at
+                                  // one point. Again, the
+                                  // declaration of the class, and
+                                  // the implementation of its
+                                  // constructor is not too
+                                  // interesting:
   template <int dim>
   class PointXDerivativeEvaluation : public DualFunctionalBase<dim>
   {
     public:
-      PointXDerivativeEvaluation (const Point<dim> &evaluation_point,
-                                 const double      tolerance);
+      PointXDerivativeEvaluation (const Point<dim> &evaluation_point);
 
       virtual
       void
       assemble_rhs (const DoFHandler<dim> &dof_handler,
                    Vector<double>        &rhs) const;
+      
       DeclException1 (ExcEvaluationPointNotFound,
                      Point<dim>,
                      << "The evaluation point " << arg1
@@ -1796,74 +2010,152 @@ namespace DualFunctional
 
     protected:
       const Point<dim> evaluation_point;
-      const double     tolerance;
   };
 
 
   template <int dim>
   PointXDerivativeEvaluation<dim>::
-  PointXDerivativeEvaluation (const Point<dim> &evaluation_point,
-                             const double      tolerance)
+  PointXDerivativeEvaluation (const Point<dim> &evaluation_point)
                  :
-                 evaluation_point (evaluation_point),
-                 tolerance (tolerance)
+                 evaluation_point (evaluation_point)
   {};
   
 
+                                  // What is interesting is the
+                                  // implementation of this
+                                  // functional: here,
+                                  // J(phi_i)=d/dx phi_i(x0).
+                                  //
+                                  // We could, as in the
+                                  // implementation of the respective
+                                  // evaluation object take the
+                                  // average of the gradients of each
+                                  // shape function phi_i at this
+                                  // evaluation point. However, we
+                                  // take a slightly different
+                                  // approach: we simply take the
+                                  // average over all cells that
+                                  // surround this point. The
+                                  // question which cells
+                                  // ``surrounds'' the evaluation
+                                  // point is made dependent on the
+                                  // mesh width by including those
+                                  // cells for which the distance of
+                                  // the cell's midpoint to the
+                                  // evaluation point is less than
+                                  // the cell's diameter.
+                                  //
+                                  // Taking the average of the
+                                  // gradient over the area/volume of
+                                  // these cells leads to a dual
+                                  // solution which is very close to
+                                  // the one which would result from
+                                  // the point evaluation of the
+                                  // gradient. It is simple to
+                                  // justify theoretically that this
+                                  // does not change the method
+                                  // significantly.
   template <int dim>
   void
   PointXDerivativeEvaluation<dim>::
   assemble_rhs (const DoFHandler<dim> &dof_handler,
                Vector<double>        &rhs) const
   {
+                                    // Again, first set all entries
+                                    // to zero:
     rhs.reinit (dof_handler.n_dofs());
 
-    QTrapez<1>     q_trapez;
-    QIterated<dim> quadrature (q_trapez, 4);
-    FEValues<dim> fe_values (dof_handler.get_fe(), quadrature,
-                            update_gradients |
-                            update_q_points  |
-                            update_JxW_values);
+                                    // Initialize a ``FEValues''
+                                    // object with a quadrature
+                                    // formula, have abbreviations
+                                    // for the number of quadrature
+                                    // points and shape functions...
+    QGauss4<dim> quadrature;
+    FEValues<dim>  fe_values (dof_handler.get_fe(), quadrature,
+                             update_gradients |
+                             update_q_points  |
+                             update_JxW_values);
     const unsigned int n_q_points = fe_values.n_quadrature_points;
     const unsigned int dofs_per_cell = dof_handler.get_fe().dofs_per_cell;
+
+                                    // ...and have two objects that
+                                    // are used to store the global
+                                    // indices of the degrees of
+                                    // freedom on a cell, and the
+                                    // values of the gradients of the
+                                    // shape functions at the
+                                    // quadrature points:
     Vector<double> cell_rhs (dofs_per_cell);
     std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+
+                                    // Finally have a variable in
+                                    // which we will sum up the
+                                    // area/volume of the cells over
+                                    // which we integrate, by
+                                    // integrating the unit functions
+                                    // on these cells:
+    double total_volume = 0;
     
+                                    // Then start the loop over all
+                                    // cells, and select those cells
+                                    // which are close enough to the
+                                    // evaluation point:
     typename DoFHandler<dim>::active_cell_iterator
       cell = dof_handler.begin_active(),
       endc = dof_handler.end();
-    double total_volume = 0;
-    
     for (; cell!=endc; ++cell)
-      if (cell->center().distance(evaluation_point) -
-         cell->diameter()/2
-         <
-         tolerance)
+      if (cell->center().distance(evaluation_point) <=
+         cell->diameter())
        {
+                                          // If we have found such a
+                                          // cell, then initialize
+                                          // the ``FEValues'' object
+                                          // and integrate the
+                                          // x-component of the
+                                          // gradient of each shape
+                                          // function, as well as the
+                                          // unit function for the
+                                          // total area/volume.
          fe_values.reinit (cell);
          cell_rhs.clear ();
          
          for (unsigned int q=0; q<n_q_points; ++q)
-           if (fe_values.quadrature_point(q).distance(evaluation_point)
-               <
-               tolerance)
-             {
-               for (unsigned int i=0; i<dofs_per_cell; ++i)
-                 cell_rhs(i) += fe_values.shape_grad(i,q)[0] *
-                                fe_values.JxW (q);
-               total_volume += fe_values.JxW (q);
-             };
-         
+           {
+             for (unsigned int i=0; i<dofs_per_cell; ++i)
+               cell_rhs(i) += fe_values.shape_grad(i,q)[0] *
+                              fe_values.JxW (q);
+             total_volume += fe_values.JxW (q);
+           };
+
+                                          // If we have the local
+                                          // contributions,
+                                          // distribute them to the
+                                          // global vector:
          cell->get_dof_indices (local_dof_indices);
          for (unsigned int i=0; i<dofs_per_cell; ++i)
            rhs(local_dof_indices[i]) += cell_rhs(i);
        };
 
+                                    // After we have looped over all
+                                    // cells, check whether we have
+                                    // found any at all, by making
+                                    // sure that their volume is
+                                    // non-zero. If not, then the
+                                    // results will be botched, as
+                                    // the right hand side should
+                                    // then still be zero, so throw
+                                    // an exception:
+    AssertThrow (total_volume > 0,
+                ExcEvaluationPointNotFound(evaluation_point));
+
+                                    // Finally, we have by now only
+                                    // integrated the gradients of
+                                    // the shape functions, not
+                                    // taking their mean value. We
+                                    // fix this by dividing by the
+                                    // measure of the volume over
+                                    // which we have integrated:
     rhs.scale (1./total_volume);
-    
-    std::cout << "Total volume=" << total_volume
-             << ", should have been " << 3.1415926*tolerance*tolerance
-             << std::endl;
   };
   
 
@@ -2289,45 +2581,100 @@ namespace LaplaceSolver
   void
   WeightedResidual<dim>::refine_grid ()
   {
+                                    // First call the function that
+                                    // computes the cell-wise and
+                                    // global error:
     Vector<float> error_indicators (triangulation->n_active_cells());
     estimate_error (error_indicators);
-    DataOut<dim> data_out;
-    std::ofstream x("x");
-    Vector<double> xe (error_indicators.begin(),
-                      error_indicators.end());
-    data_out.attach_dof_handler (DualSolver<dim>::dof_handler);
-    data_out.add_data_vector (xe, "e");
-    data_out.build_patches ();
-    data_out.write_gnuplot (x);
-    
-    std::transform (error_indicators.begin(),
-                   error_indicators.end(),
-                   error_indicators.begin(),
-                   &fabs);
-                                    // TODO: take fixed error fraction criterion!
-    GridRefinement::refine_and_coarsen_fixed_number (*triangulation,
-                                                    error_indicators,
-                                                    0.3, 0.03);
+
+                                    // Then note that marking cells
+                                    // for refinement or coarsening
+                                    // only works if all indicators
+                                    // are positive, to allow their
+                                    // comparison. Thus, drop the
+                                    // signs on all these indicators:
+    for (Vector<float>::iterator i=error_indicators.begin();
+        i != error_indicators.end(); ++i)
+      *i = std::fabs (*i);
+
+                                    // Finally, we can select between
+                                    // different strategies for
+                                    // refinement. The default here
+                                    // is to refine those cells with
+                                    // the largest error indicators
+                                    // that make up for a total of 80
+                                    // per cent of the error, while
+                                    // we coarsen those with the
+                                    // smallest indicators that make
+                                    // up for the bottom 2 per cent
+                                    // of the error.
+    GridRefinement::refine_and_coarsen_fixed_fraction (*triangulation,
+                                                      error_indicators,
+                                                      0.8, 0.02);
+
+                                    // Alternatively, we might fall
+                                    // back to refining and
+                                    // coarsening a fixed fraction of
+                                    // all cells, say 30 per cent for
+                                    // refinement, and 3 per cent for
+                                    // coarsening. If you want that,
+                                    // uncomment the following lines,
+                                    // and remove the lines above.
+/*      GridRefinement::refine_and_coarsen_fixed_number (*triangulation, */
+/*                                                  error_indicators,   */
+/*                                                  0.3, 0.03);         */
+
     triangulation->execute_coarsening_and_refinement ();
   };
   
 
-  
+                                  // Since we want to output both the
+                                  // primal and the dual solution, we
+                                  // overload the ``output_solution''
+                                  // function. The only interesting
+                                  // feature of this function is that
+                                  // the primal and dual solutions
+                                  // are defined on different finite
+                                  // element spaces, which is not the
+                                  // format the ``DataOut'' class
+                                  // expects. Thus, we have to
+                                  // transfer them to a common finite
+                                  // element space. Since we want the
+                                  // solutions only to see them
+                                  // qualitatively, we contend
+                                  // ourselves with interpolating the
+                                  // dual solution to the (smaller)
+                                  // primal space. For the
+                                  // interpolation, there is a
+                                  // library function, the rest is
+                                  // standard. Further down in the
+                                  // ``estimate_error'' function we
+                                  // explain that the result of the
+                                  // interpolation is not a
+                                  // conforming finite element field,
+                                  // i.e. the interpolated dual
+                                  // solution is no more
+                                  // continuous. We could fix this
+                                  // (and do so in the
+                                  // ``estimate_error'' function),
+                                  // but since this is only for
+                                  // graphical output, we don't care
+                                  // here.
   template <int dim>
   void
   WeightedResidual<dim>::output_solution () const
   {
-    Vector<double> primal_solution (DualSolver<dim>::dof_handler.n_dofs());
-    FETools::interpolate (PrimalSolver<dim>::dof_handler,
-                         PrimalSolver<dim>::solution,
-                         DualSolver<dim>::dof_handler,
-                         primal_solution);    
+    Vector<double> dual_solution (PrimalSolver<dim>::dof_handler.n_dofs());
+    FETools::interpolate (DualSolver<dim>::dof_handler,
+                         DualSolver<dim>::solution,
+                         PrimalSolver<dim>::dof_handler,
+                         dual_solution);    
 
     DataOut<dim> data_out;
-    data_out.attach_dof_handler (DualSolver<dim>::dof_handler);
-    data_out.add_data_vector (primal_solution,
+    data_out.attach_dof_handler (PrimalSolver<dim>::dof_handler);
+    data_out.add_data_vector (PrimalSolver<dim>::solution,
                              "primal_solution");
-    data_out.add_data_vector (DualSolver<dim>::solution,
+    data_out.add_data_vector (dual_solution,
                              "dual_solution");
     
     data_out.build_patches ();
@@ -3118,104 +3465,248 @@ namespace LaplaceSolver
 
 
                                 // TODO!!
-
 template <int dim>
-void
-run_simulation (LaplaceSolver::Base<dim>                     &solver,
-               const std::list<Evaluation::EvaluationBase<dim> *> &postprocessor_list)
+struct Framework
 {
-  std::cout << "Refinement cycle: ";
+  public:
+    typedef Evaluation::EvaluationBase<dim> Evaluator;
+    typedef std::list<Evaluator*>           EvaluatorList;
 
-  for (unsigned int step=0; true; ++step)
+    struct ProblemDescription 
     {
-      std::cout << step << " Solving "
-               << solver.n_dofs()
-               << std::endl;
+       unsigned int primal_fe_degree;
+       unsigned int dual_fe_degree;
 
-      solver.set_refinement_cycle (step);
-      solver.solve_problem ();
-      solver.output_solution ();
+       const Data::SetUpBase<dim> *data;
+       const DualFunctional::DualFunctionalBase<dim> *dual_functional;
 
-      for (typename std::list<Evaluation::EvaluationBase<dim> *>::const_iterator
-            i = postprocessor_list.begin();
-          i != postprocessor_list.end(); ++i)
-       {
-         (*i)->set_refinement_cycle (step);
-         solver.postprocess (**i);
-       };
+       EvaluatorList evaluator_list;
 
+       unsigned int max_degrees_of_freedom;
 
-      if (solver.n_dofs() < 500000)
-       solver.refine_grid ();
-      else
-       break;
-    };
+       enum RefinementCriterion {
+             dual_weighted_error_estimator,
+             global_refinement,
+             weighted_kelly_indicator
+       };
 
-  std::cout << std::endl;
+       RefinementCriterion refinement_criterion;
+    };
+    
+    static void run (const ProblemDescription &descriptor);
 };
 
 
 
-
 template <int dim>
-void solve_problem ()
+void Framework<dim>::run (const ProblemDescription &descriptor)
 {
-  Triangulation<dim> triangulation (Triangulation<dim>::smoothing_on_refinement);
-  const FE_Q<dim>          primal_fe(1);
-  const FE_Q<dim>          dual_fe(2);
-  const QGauss4<dim>       quadrature;
-  const QGauss4<dim-1>     face_quadrature;
+                                  // First create a triangulation
+                                  // from the given data object,
+  Triangulation<dim>
+    triangulation (Triangulation<dim>::smoothing_on_refinement);
+  descriptor.data->create_coarse_grid (triangulation);
+
+                                  // then a set of finite elements
+                                  // and appropriate quadrature
+                                  // formula:
+  const FE_Q<dim>     primal_fe(descriptor.primal_fe_degree);
+  const FE_Q<dim>     dual_fe(descriptor.dual_fe_degree);
+  const QGauss<dim>   quadrature(2*descriptor.dual_fe_degree+1);
+  const QGauss<dim-1> face_quadrature(2*descriptor.dual_fe_degree+1);
 
-  const Data::SetUpBase<dim> *data =
-    new Data::SetUp<Data::Exercise_2_3<dim>,dim> ();
+  LaplaceSolver::Base<dim> * solver = 0;
+  using namespace LaplaceSolver;
+  switch (descriptor.refinement_criterion)
+    {
+      case ProblemDescription::dual_weighted_error_estimator:
+           solver
+             = new WeightedResidual<dim> (triangulation,
+                                          primal_fe,
+                                          dual_fe,
+                                          quadrature,
+                                          face_quadrature,
+                                          descriptor.data->get_right_hand_side(),
+                                          descriptor.data->get_boundary_values(),
+                                          *descriptor.dual_functional);
+           break;
+      case ProblemDescription::global_refinement:
+           solver
+             = new RefinementGlobal<dim> (triangulation,
+                                          primal_fe,
+                                          quadrature,
+                                          face_quadrature,
+                                          descriptor.data->get_right_hand_side(),
+                                          descriptor.data->get_boundary_values());
+           break;
+      case ProblemDescription::weighted_kelly_indicator:
+           solver
+             = new RefinementWeightedKelly<dim> (triangulation,
+                                                 primal_fe,
+                                                 quadrature,
+                                                 face_quadrature,
+                                                 descriptor.data->get_right_hand_side(),
+                                                 descriptor.data->get_boundary_values());
+           break;
 
-  data->create_coarse_grid (triangulation);
-  
-  const Point<dim> evaluation_point(0.75,0.75);
-  const DualFunctional::PointXDerivativeEvaluation<dim>
-    dual_functional (evaluation_point, 0.01);
+      default:
+           AssertThrow (false, ExcInternalError());
+    };
   
-  LaplaceSolver::Base<dim> * solver = 0;
-  solver = new LaplaceSolver::WeightedResidual<dim> (triangulation,
-                                                    primal_fe,
-                                                    dual_fe,
-                                                    quadrature,
-                                                    face_quadrature,
-                                                    data->get_right_hand_side(),
-                                                    data->get_boundary_values(),
-                                                    dual_functional);
-
-  TableHandler results_table;
-  Evaluation::PointValueEvaluation<dim>
-    postprocessor1 (Point<dim>(0.75,0.75), results_table);
-  Evaluation::PointXDerivativeEvaluation<dim>
-    postprocessor2 (Point<dim>(0.75,0.75), results_table);
-  Evaluation::GridOutput<dim>
-    postprocessor3 ("grid");
-
-  std::list<Evaluation::EvaluationBase<dim> *> postprocessor_list;
-  postprocessor_list.push_back (&postprocessor1);
-  postprocessor_list.push_back (&postprocessor2);
-  postprocessor_list.push_back (&postprocessor3);
-
-  run_simulation (*solver, postprocessor_list);
-
-  results_table.write_text (std::cout);
-  delete solver;
 
+  for (unsigned int step=0; true; ++step)
+    {
+      std::cout << "Refinement cycle: "        << step
+               << std::endl;
+           
+      solver->set_refinement_cycle (step);
+      solver->solve_problem ();
+      solver->output_solution ();
+
+      for (typename EvaluatorList::const_iterator
+            e = descriptor.evaluator_list.begin();
+          e != descriptor.evaluator_list.end(); ++e)
+       {
+         (*e)->set_refinement_cycle (step);
+         solver->postprocess (**e);
+       };
+
+           
+      if (solver->n_dofs() < descriptor.max_degrees_of_freedom)
+       solver->refine_grid ();
+      else
+       break;
+    };
+       
   std::cout << std::endl;
+
+  delete solver;
+  solver = 0;
 };
 
 
 
+
+                                // @sect3{The main function}
+
+                                // Here finally comes the main
+                                // function. It drives the whole
+                                // process by specifying a set of
+                                // parameters to be used for the
+                                // simulation (polynomial degrees,
+                                // evaluation and dual functionals,
+                                // etc), and passes them packed into
+                                // a structure to the frame work
+                                // class above.
 int main () 
 {
+  deallog.depth_console (0);
   try
     {
-      deallog.depth_console (0);
-
-      solve_problem<2> ();
+                                      // Describe the problem we want
+                                      // to solve here by passing a
+                                      // descriptor object to the
+                                      // function doing the rest of
+                                      // the work:
+      const unsigned int dim = 2;
+      Framework<dim>::ProblemDescription descriptor;
+
+                                      // First set the refinement
+                                      // criterion we wish to use:
+      descriptor.refinement_criterion
+       = Framework<dim>::ProblemDescription::dual_weighted_error_estimator;
+                                      // Here, we could as well have
+                                      // used ``global_refinement''
+                                      // or
+                                      // ``weighted_kelly_indicator''. Note
+                                      // that the information given
+                                      // about dual finite elements,
+                                      // dual functional, etc is only
+                                      // important for the given
+                                      // choice of refinement
+                                      // criterion, and is ignored
+                                      // otherwise.
+
+                                      // Then set the polynomial
+                                      // degrees of primal and dual
+                                      // problem. We choose here
+                                      // bi-linear and bi-quadratic
+                                      // ones:
+      descriptor.primal_fe_degree = 1;
+      descriptor.dual_fe_degree   = 2;
+
+                                      // Then set the description of
+                                      // the test case, i.e. domain,
+                                      // boundary values, and right
+                                      // hand side. These are
+                                      // prepackaged in classes. We
+                                      // take here the description of
+                                      // ``Exercise_2_3'', but you
+                                      // can also use
+                                      // ``CurvedRidges<dim>'':
+      descriptor.data = new Data::SetUp<Data::Exercise_2_3<dim>,dim> ();
+      
+                                      // Next set first a dual
+                                      // functional, then a list of
+                                      // evaluation objects. We
+                                      // choose as default the
+                                      // evaluation of the
+                                      // x-derivative at an
+                                      // evaluation point,
+                                      // represented by the classes
+                                      // ``PointXDerivativeEvaluation''
+                                      // in the namespaces of
+                                      // evaluation and dual
+                                      // functional classes. You can
+                                      // also set the
+                                      // ``PointValueEvaluation''
+                                      // classes for the value
+                                      // instead of the x-derivative
+                                      // at the evaluation point.
+                                      //
+                                      // Note that dual functional
+                                      // and evaluation objects
+                                      // should match. However, you
+                                      // can give as many evaluation
+                                      // functionals as you want, so
+                                      // you can have both point
+                                      // value and derivative
+                                      // evaluated after each step.
+                                      // One such additional
+                                      // evaluation is to output the
+                                      // grid in each step.
+      const Point<dim> evaluation_point (0.75, 0.75);
+      descriptor.dual_functional
+       = new DualFunctional::PointXDerivativeEvaluation<dim> (evaluation_point);
+      
+      TableHandler results_table;
+      Evaluation::PointXDerivativeEvaluation<dim>
+       postprocessor1 (evaluation_point, results_table);
+      Evaluation::GridOutput<dim>
+       postprocessor2 ("grid");
+      
+      descriptor.evaluator_list.push_back (&postprocessor1);
+      descriptor.evaluator_list.push_back (&postprocessor2);
+
+                                      // Set the maximal number of
+                                      // degrees of freedom after
+                                      // which we want the program to
+                                      // stop refining the mesh
+                                      // further:
+      descriptor.max_degrees_of_freedom = 20000;
+      
+                                      // Finally pass the descriptor
+                                      // object to a function that
+                                      // runs the entire solution
+                                      // with it:
+      Framework<dim>::run (descriptor);
+      
+      results_table.write_text (std::cout);
     }
+
+                                  // Catch exceptions to give
+                                  // information about things that
+                                  // failed:
   catch (std::exception &exc)
     {
       std::cerr << std::endl << std::endl

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.