]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Finish support for error estimator also on unstructured grids.
authorwolf <wolf@0785d39b-7218-0410-832d-ea1e28bc413d>
Wed, 6 May 1998 14:12:10 +0000 (14:12 +0000)
committerwolf <wolf@0785d39b-7218-0410-832d-ea1e28bc413d>
Wed, 6 May 1998 14:12:10 +0000 (14:12 +0000)
git-svn-id: https://svn.dealii.org/trunk@257 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/deal.II/include/numerics/error_estimator.h
deal.II/deal.II/source/numerics/error_estimator.cc

index f1af6816fba6d4802bdab5e5b53a9fa646ed9285..83dc2d8ec675e037d8bf4187028e87298cd386e9 100644 (file)
@@ -61,6 +61,20 @@ class dVector;
    sum up the contributions of the faces (which are the integrated
    square of the jumps) of each cell and take the square root.
 
+   We store the contribution of each face in a #map#, as provided by the
+   C++ standard library, with the iterator pointing to that face being the
+   key into the map. In fact, we do not store the indicator per face, but
+   only the integral listed above. When looping the second time over all
+   cells, we have to sum up the contributions of the faces, multiply them
+   with $\frac h{24}$ and take the square root. By doing the multiplication
+   with $h$ in the second loop, we avoid problems to decide with which $h$
+   to multiply, that of the cell on the one or that of the cell on the other
+   side of the face.
+
+   $h$ is taken to be the greatest length of the diagonals of the cell. For
+   more or less uniform cells without deformed angles, this coincides with
+   the diameter of the cell.
+   
 
    {\bf Boundary values}
    
@@ -201,7 +215,23 @@ class KellyErrorEstimator {
                                             FaceIntegrals       &face_integrals,
                                             const dVector       &solution);
 
-    static void integrate_over_irregular_face ();
+                                    /**
+                                     * The same applies as for the function
+                                     * above, except that integration is
+                                     * over face #face_no# of #cell#, where
+                                     * the respective neighbor is refined,
+                                     * so that the integration is a bit more
+                                     * complex.
+                                     */
+    static void integrate_over_irregular_face (const active_cell_iterator &cell,
+                                              const unsigned int   face_no,
+                                              const FiniteElement<dim> &fe,
+                                              const Boundary<dim>      &boundary,
+                                              const unsigned int    n_q_points,
+                                              FEFaceValues<dim>    &fe_face_values,
+                                              FESubfaceValues<dim> &fe_subface_values,
+                                              FaceIntegrals        &face_integrals,
+                                              const dVector        &solution);
 };
 
 
index f50b209fa61e8d20370e4899f6398fd867ccd555..e9d7835c3a554072c33455afe61eddb495aed6db 100644 (file)
@@ -9,6 +9,7 @@
 #include <grid/dof.h>
 #include <grid/tria_iterator.h>
 #include <grid/dof_accessor.h>
+#include <grid/geometry_info.h>
 #include <lac/dvector.h>
 
 #include <numeric>
@@ -80,12 +81,15 @@ void KellyErrorEstimator<dim>::estimate_error (const DoFHandler<dim>    &dof,
   FEFaceValues<dim> fe_face_values_neighbor (fe, quadrature,
                                             UpdateFlags(update_gradients |
                                                         update_jacobians));
-
+  FESubfaceValues<dim> fe_subface_values (fe, quadrature,
+                                         UpdateFlags(update_gradients |
+                                                     update_jacobians));
+  
                                   // loop over all cells
   const active_cell_iterator endc = dof.end();
   for (active_cell_iterator cell = dof.begin_active(); cell!=endc; ++cell)
                                     // loop over all faces of this cell
-    for (unsigned int face_no=0; face_no<2*dim; ++face_no)
+    for (unsigned int face_no=0; face_no<GeometryInfo<dim>::faces_per_cell; ++face_no)
       {
                                         // if we already visited this
                                         // face: do nothing
@@ -139,7 +143,11 @@ void KellyErrorEstimator<dim>::estimate_error (const DoFHandler<dim>    &dof,
                                           // special computations which do
                                           // not fit into the framework of
                                           // the above function
-         integrate_over_irregular_face ();
+         integrate_over_irregular_face (cell, face_no, fe, boundary,
+                                        n_q_points,
+                                        fe_face_values_cell,
+                                        fe_subface_values,
+                                        face_integrals, solution);
       };
 
 
@@ -154,12 +162,13 @@ void KellyErrorEstimator<dim>::estimate_error (const DoFHandler<dim>    &dof,
   for (active_cell_iterator cell=dof.begin_active(); cell!=endc; ++cell, ++present_cell)
     {
                                       // loop over all faces of this cell
-      for (unsigned int face_no=0; face_no<2*dim; ++face_no) 
+      for (unsigned int face_no=0; face_no<GeometryInfo<dim>::faces_per_cell; ++face_no) 
        {
          Assert (face_integrals.find(cell->face(face_no)) !=
                  face_integrals.end(),
                  ExcInternalError());
-         error(present_cell) += face_integrals[cell->face(face_no)];
+         error(present_cell) += (face_integrals[cell->face(face_no)] *
+                                 cell->diameter() / 24);
        };
           
       error(present_cell) = sqrt(error(present_cell));
@@ -198,7 +207,7 @@ integrate_over_regular_face (const active_cell_iterator &cell,
                             FEFaceValues<dim>          &fe_face_values_neighbor,
                             FaceIntegrals              &face_integrals,
                             const dVector              &solution) {
-  DoFHandler<dim>::face_iterator face = cell->face(face_no);
+  const DoFHandler<dim>::face_iterator face = cell->face(face_no);
   
                                   // initialize data of the restriction
                                   // of this cell to the present face
@@ -230,18 +239,19 @@ integrate_over_regular_face (const active_cell_iterator &cell,
                                       // find which number the current
                                       // face has relative to the neighboring
                                       // cell
-      for (neighbor_neighbor=0; neighbor_neighbor<2*dim; ++neighbor_neighbor)
+      for (neighbor_neighbor=0; neighbor_neighbor<GeometryInfo<dim>::faces_per_cell;
+          ++neighbor_neighbor)
        if (neighbor->neighbor(neighbor_neighbor) == cell)
          break;
       
-      Assert (neighbor_neighbor<dim*2, ExcInternalError());
+      Assert (neighbor_neighbor<GeometryInfo<dim>::faces_per_cell, ExcInternalError());
       
                                       // get restriction of finite element
                                       // function of #neighbor# to the
                                       // common face.
       fe_face_values_neighbor.reinit (neighbor, neighbor_neighbor,
                                      fe, boundary);
-      
+
                                       // get a list of the gradients of
                                       // the finite element solution
                                       // restricted to the neighbor cell
@@ -321,19 +331,144 @@ integrate_over_regular_face (const active_cell_iterator &cell,
   
                                   // perform integration by multiplication
                                   // with weights and summation.
-  face_integrals[face] = (inner_product (phi.begin(), phi.end(),
-                                        fe_face_values_cell.get_JxW_values().begin(),
-                                        0.0) *
-                         cell->diameter() / 24);
+  face_integrals[face] = inner_product (phi.begin(), phi.end(),
+                                       fe_face_values_cell.get_JxW_values().begin(),
+                                       0.0);
 };
 
 
 
 
+void KellyErrorEstimator<1>::
+integrate_over_irregular_face (const active_cell_iterator &,
+                              const unsigned int          ,
+                              const FiniteElement<1>     &,
+                              const Boundary<1>          &,
+                              const unsigned int          ,
+                              FEFaceValues<1>            &,
+                              FESubfaceValues<1>         &,
+                              FaceIntegrals              &,
+                              const dVector              &) {
+  Assert (false, ExcInternalError());
+};
+
+
+
 template <int dim>
 void KellyErrorEstimator<dim>::
-integrate_over_irregular_face () {
-  Assert (false, ExcInternalError());
+integrate_over_irregular_face (const active_cell_iterator &cell,
+                              const unsigned int          face_no,
+                              const FiniteElement<dim>   &fe,
+                              const Boundary<dim>        &boundary,
+                              const unsigned int          n_q_points,
+                              FEFaceValues<dim>          &fe_face_values,
+                              FESubfaceValues<dim>       &fe_subface_values,
+                              FaceIntegrals              &face_integrals,
+                              const dVector              &solution) {
+  const DoFHandler<dim>::cell_iterator neighbor = cell->neighbor(face_no);
+  Assert (neighbor.state() == valid, ExcInternalError());
+  Assert (neighbor->has_children(), ExcInternalError());
+  Assert (neighbor->child(0)->has_children()==false,
+         ExcInternalError());
+                                  // set up a vector of the gradients
+                                  // of the finite element function
+                                  // on this cell at the quadrature
+                                  // points
+                                  //
+                                  // let psi be a short name for
+                                  // [grad u_h]
+  vector<Point<dim> > psi(n_q_points);
+
+                                  // store which number #cell# has in the
+                                  // list of neighbors of #neighbor#
+  unsigned int neighbor_neighbor;
+  for (neighbor_neighbor=0; neighbor_neighbor<GeometryInfo<dim>::faces_per_cell;
+       ++neighbor_neighbor)
+    if (neighbor->neighbor(neighbor_neighbor) == cell)
+      break;
+  Assert (neighbor_neighbor<GeometryInfo<dim>::faces_per_cell, ExcInternalError());
+  
+                                  // loop over all subfaces
+  for (unsigned int subface_no=0; subface_no<GeometryInfo<dim>::subfaces_per_face;
+       ++subface_no)
+    {
+                                      // get an iterator pointing to the
+                                      // cell behind the present subface
+      const active_cell_iterator neighbor_child
+       = neighbor->child(GeometryInfo<dim>::
+                         child_cell_on_face(neighbor_neighbor,subface_no));
+      Assert (neighbor_child->face(neighbor_neighbor) ==
+             cell->face(face_no)->child(subface_no),
+             ExcInternalError());
+            
+                                      // restrict the finite element on the
+                                      // present cell to the subface and
+                                      // store the gradient of the solution
+                                      // in psi
+      fe_subface_values.reinit (cell, face_no, subface_no,
+                               fe, boundary);
+      fe_subface_values.get_function_grads (solution, psi);
+
+                                      // restrict the finite element on the
+                                      // neighbor cell to the common #subface#.
+                                      // store the gradient in #neighbor_psi#
+      vector<Point<dim> > neighbor_psi (n_q_points);
+      fe_face_values.reinit (neighbor_child, neighbor_neighbor,
+                            fe, boundary);
+      fe_face_values.get_function_grads (solution, neighbor_psi);
+      
+                                      // compute the jump in the gradients
+      transform (psi.begin(), psi.end(),
+                neighbor_psi.begin(),
+                psi.begin(),
+                minus<Point<dim> >());
+
+                                  // next we have to multiply this with
+                                  // the normal vector. Since we have
+                                  // taken the difference of gradients
+                                  // for internal faces, we may chose
+                                  // the normal vector of one cell,
+                                  // taking that of the neighbor
+                                  // would only change the sign. We take
+                                  // the outward normal.
+                                  //
+                                  // let phi be the name of the integrand
+      vector<double> phi(n_q_points,0);
+      const vector<Point<dim> > &normal_vectors(fe_face_values.
+                                               get_normal_vectors());
+  
+      for (unsigned int point=0; point<n_q_points; ++point)
+       phi[point] = psi[point]*normal_vectors[point];
+                                      // take the square of the phi[i]
+                                      // for integration
+      transform (phi.begin(), phi.end(),
+                phi.begin(), ptr_fun(sqr));
+
+                                      // perform integration by multiplication
+                                      // with weights and summation.
+      face_integrals[neighbor_child->face(neighbor_neighbor)]
+       = inner_product (phi.begin(), phi.end(),
+                        fe_face_values.get_JxW_values().
+                        begin(),
+                        0.0);
+    };
+
+  
+                                  // finally loop over all subfaces to
+                                  // collect the contributions of the
+                                  // subfaces and store them with the
+                                  // mother face
+  double sum=0;
+  DoFHandler<dim>::face_iterator face = cell->face(face_no);
+  for (unsigned int subface_no=0; subface_no<GeometryInfo<dim>::subfaces_per_face;
+       ++subface_no) 
+    {
+      Assert (face_integrals.find(face->child(subface_no)) !=
+             face_integrals.end(),
+             ExcInternalError());
+      sum += face_integrals[face->child(subface_no)];
+    };
+  face_integrals[face] = sum;
 };
 
 

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.