]> https://gitweb.dealii.org/ - dealii.git/commitdiff
make first steps a bit more conforming to later
authorGuido Kanschat <dr.guido.kanschat@gmail.com>
Wed, 27 Jul 2011 05:29:10 +0000 (05:29 +0000)
committerGuido Kanschat <dr.guido.kanschat@gmail.com>
Wed, 27 Jul 2011 05:29:10 +0000 (05:29 +0000)
git-svn-id: https://svn.dealii.org/trunk@23966 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-3/step-3.cc
deal.II/examples/step-4/step-4.cc

index a6dab141db47d74bb60c6e562017e25a3ebfc9ba..b6ad0b9046bfdd3dfe2910a3123b9718e3289742 100644 (file)
@@ -1,9 +1,9 @@
 /* $Id$ */
-/* Author: Wolfgang Bangerth, University of Heidelberg, 1999 */
+/* Author: Wolfgang Bangerth, 1999, Guido Kanschat, 2011 */
 
 /*    $Id$       */
 /*                                                                */
-/*    Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2010 by the deal.II authors */
+/*    Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2010, 2011 by the deal.II authors */
 /*                                                                */
 /*    This file is subject to QPL and may not be  distributed     */
 /*    without copyright and license information. Please refer     */
@@ -129,8 +129,10 @@ class LaplaceProblem
                                     // suggest. Since they do not need to be
                                     // called from outside, they are made
                                     // private to this class.
+
   private:
-    void make_grid_and_dofs ();
+    void make_grid ();
+    void setup_system ();
     void assemble_system ();
     void solve ();
     void output_results () const;
@@ -189,7 +191,7 @@ LaplaceProblem::LaplaceProblem () :
 {}
 
 
-                                 // @sect4{LaplaceProblem::make_grid_and_dofs}
+                                 // @sect4{LaplaceProblem::make_grid}
 
                                  // Now, the first thing we've got to
                                 // do is to generate the
@@ -197,12 +199,8 @@ LaplaceProblem::LaplaceProblem () :
                                 // like to do our computation and
                                 // number each vertex with a degree
                                 // of freedom. We have seen this in
-                                // the previous examples before. Then
-                                // we have to set up space for the
-                                // system matrix and right hand side
-                                // of the discretized problem. This
-                                // is what this function does:
-void LaplaceProblem::make_grid_and_dofs ()
+                                // the previous examples before.
+void LaplaceProblem::make_grid ()
 {
                                   // First create the grid and refine
                                   // all cells five times. Since the
@@ -236,18 +234,25 @@ void LaplaceProblem::make_grid_and_dofs ()
            << std::endl;
                                   // Note the distinction between
                                   // n_active_cells() and n_cells().
+}
+
+                                 // @sect4{LaplaceProblem::setup_system}
 
                                   // Next we enumerate all the degrees of
-                                  // freedom. This is done by using the
-                                  // distribute_dofs function, as we have
+                                  // freedom and set up matrix and
+                                  // vector objects to hold the
+                                  // system data. Enumerating is done by using
+                                  // DoFHandler::distribute_dofs(), as we have
                                   // seen in the step-2 example. Since we use
-                                  // the <code>FE_Q</code> class with a polynomial
+                                  // the FE_Q class with a polynomial
                                   // degree of 1, i.e. bilinear elements,
                                   // this associates one degree of freedom
                                   // with each vertex. While we're at
                                   // generating output, let us also take a
                                   // look at how many degrees of freedom are
                                   // generated:
+void LaplaceProblem::setup_system ()
+{
   dof_handler.distribute_dofs (fe);
   std::cout << "Number of degrees of freedom: "
            << dof_handler.n_dofs()
@@ -351,7 +356,7 @@ void LaplaceProblem::make_grid_and_dofs ()
                                 // objects. That's too much, so there is one
                                 // type of class that orchestrates
                                 // information exchange between these three:
-                                // the <code>FEValues</code> class. If given one
+                                // the FEValues class. If given one
                                 // instance of each three of these objects,
                                 // it will be able to provide you with
                                 // information about values and gradients of
@@ -399,22 +404,22 @@ void LaplaceProblem::assemble_system ()
                                   // actually need is given as a bitwise
                                   // connection of flags as the third
                                   // argument to the constructor of
-                                  // <code>FEValues</code>. Since these values have to
+                                  // FEValues. Since these values have to
                                   // be recomputed, or updated, every time we
                                   // go to a new cell, all of these flags
                                   // start with the prefix <code>update_</code> and
                                   // then indicate what it actually is that
                                   // we want updated. The flag to give if we
                                   // want the values of the shape functions
-                                  // computed is <code>update_values</code>; for the
+                                  // computed is #update_values; for the
                                   // gradients it is
-                                  // <code>update_gradients</code>. The determinants
+                                  // #update_gradients. The determinants
                                   // of the Jacobians and the quadrature
                                   // weights are always used together, so
                                   // only the products (Jacobians times
                                   // weights, or short <code>JxW</code>) are computed;
                                   // since we need them, we have to list
-                                  // <code>update_JxW_values</code> as well:
+                                  // #update_JxW_values as well:
   FEValues<2> fe_values (fe, quadrature_formula,
                         update_values | update_gradients | update_JxW_values);
                                    // The advantage of this proceeding is that
@@ -561,7 +566,7 @@ void LaplaceProblem::assemble_system ()
                                       // determinant and the quadrature point
                                       // weight (that one gets together by
                                       // the call to
-                                      // <code>fe_values.JxW</code>). Finally, this is
+                                      // FEValues::JxW() ). Finally, this is
                                       // repeated for all shape functions
                                       // phi_i and phi_j:
       for (unsigned int i=0; i<dofs_per_cell; ++i)
@@ -652,7 +657,7 @@ void LaplaceProblem::assemble_system ()
                                   // rather than projecting it onto the
                                   // boundary. There is a function in the
                                   // library which does exactly this:
-                                  // <code>VectorTools::interpolate_boundary_values</code>. Its
+                                  // VectorTools::interpolate_boundary_values(). Its
                                   // parameters are (omitting parameters for
                                   // which default values exist and that we
                                   // don't care about): the DoFHandler object
@@ -690,13 +695,13 @@ void LaplaceProblem::assemble_system ()
                                   // the boundary.
                                   //
                                   // The function describing the boundary
-                                  // values is an object of type <code>Function</code>
+                                  // values is an object of type Function
                                   // or of a derived class. One of the
-                                  // derived classes is <code>ZeroFunction</code>,
+                                  // derived classes is ZeroFunction,
                                   // which describes (not unexpectedly) a
                                   // function which is zero everywhere. We
                                   // create such an object in-place and pass
-                                  // it to the interpolate_boundary_values
+                                  // it to the VectorTools::interpolate_boundary_values()
                                   // function.
                                   //
                                   // Finally, the output object is a
@@ -751,7 +756,7 @@ void LaplaceProblem::solve ()
                                   // First, we need to have an object that
                                   // knows how to tell the CG algorithm when
                                   // to stop. This is done by using a
-                                  // <code>SolverControl</code> object, and as
+                                  // SolverControl object, and as
                                   // stopping criterion we say: stop after a
                                   // maximum of 1000 iterations (which is far
                                   // more than is needed for 1089 variables;
@@ -762,7 +767,7 @@ void LaplaceProblem::solve ()
                                   // the one which stops the iteration:
   SolverControl           solver_control (1000, 1e-12);
                                   // Then we need the solver itself. The
-                                  // template parameters to the <code>SolverCG</code>
+                                  // template parameters to the SolverCG
                                   // class are the matrix type and the type
                                   // of the vectors, but the empty angle
                                   // brackets indicate that we simply take
@@ -803,13 +808,13 @@ void LaplaceProblem::output_results () const
                                   // To write the output to a file,
                                   // we need an object which knows
                                   // about output formats and the
-                                  // like. This is the <code>DataOut</code> class,
+                                  // like. This is the DataOut class,
                                   // and we need an object of that
                                   // type:
   DataOut<2> data_out;
                                   // Now we have to tell it where to take the
                                   // values from which it shall write. We
-                                  // tell it which <code>DoFHandler</code> object to
+                                  // tell it which DoFHandler object to
                                   // use, and the solution vector (and
                                   // the name by which the solution variable
                                   // shall appear in the output file). If
@@ -826,7 +831,7 @@ void LaplaceProblem::output_results () const
                                   // handle. The reason is that we
                                   // have separated the frontend
                                   // (which knows about how to treat
-                                  // <code>DoFHandler</code> objects and data
+                                  // DoFHandler objects and data
                                   // vectors) from the back end (which
                                   // knows many different output formats)
                                   // and use an intermediate data
@@ -861,7 +866,8 @@ void LaplaceProblem::output_results () const
                                 // to comment about:
 void LaplaceProblem::run ()
 {
-  make_grid_and_dofs ();
+  make_grid ();
+  setup_system();
   assemble_system ();
   solve ();
   output_results ();
index 2ac20209145a57adcb9dfbc437cb935a418c3310..8ef4990a50d4f40975a42cb6fd95c704e63cfa6b 100644 (file)
                                 // into the global namespace:
 using namespace dealii;
 
-                                 // @sect3{The <code>LaplaceProblem</code> class template}
+                                 // @sect3{The <code>Step4</code> class template}
 
                                 // This is again the same
-                                // <code>LaplaceProblem</code> class as in the
+                                // <code>Step4</code> class as in the
                                 // previous example. The only
                                 // difference is that we have now
                                 // declared it as a class with a
@@ -75,14 +75,15 @@ using namespace dealii;
                                 // respectively. Apart from this,
                                 // everything is as before.
 template <int dim>
-class LaplaceProblem 
+class Step4 
 {
   public:
-    LaplaceProblem ();
+    Step4 ();
     void run ();
     
   private:
-    void make_grid_and_dofs ();
+    void make_grid ();
+    void setup_system();
     void assemble_system ();
     void solve ();
     void output_results () const;
@@ -236,7 +237,7 @@ double BoundaryValues<dim>::value (const Point<dim> &p,
 
 
 
-                                 // @sect3{Implementation of the <code>LaplaceProblem</code> class}
+                                 // @sect3{Implementation of the <code>Step4</code> class}
 
                                  // Next for the implementation of the class
                                  // template that makes use of the functions
@@ -246,7 +247,7 @@ double BoundaryValues<dim>::value (const Point<dim> &p,
                                  // the time we define the template
                                  // functions. Only later, the compiler will
                                  // find a declaration of
-                                 // <code>LaplaceProblem@<2@></code> (in the
+                                 // <code>Step4@<2@></code> (in the
                                  // <code>main</code> function, actually) and
                                  // compile the entire class with
                                  // <code>dim</code> replaced by 2, a process
@@ -260,16 +261,16 @@ double BoundaryValues<dim>::value (const Point<dim> &p,
                                  //
                                  // In fact, the compiler will also find a
                                  // declaration
-                                 // <code>LaplaceProblem@<3@></code> in
+                                 // <code>Step4@<3@></code> in
                                  // <code>main()</code>. This will cause it to
                                  // again go back to the general
-                                 // <code>LaplaceProblem@<dim@></code>
+                                 // <code>Step4@<dim@></code>
                                  // template, replace all occurrences of
                                  // <code>dim</code>, this time by 3, and
                                  // compile the class a second time. Note that
                                  // the two instantiations
-                                 // <code>LaplaceProblem@<2@></code> and
-                                 // <code>LaplaceProblem@<3@></code> are
+                                 // <code>Step4@<2@></code> and
+                                 // <code>Step4@<3@></code> are
                                  // completely independent classes; their only
                                  // common feature is that they are both
                                  // instantiated from the same general
@@ -279,24 +280,24 @@ double BoundaryValues<dim>::value (const Point<dim> &p,
                                  // completely independently).
 
 
-                                 // @sect4{LaplaceProblem::LaplaceProblem}
+                                 // @sect4{Step4::Step4}
 
                                 // After this introduction, here is the
-                                // constructor of the <code>LaplaceProblem</code>
+                                // constructor of the <code>Step4</code>
                                 // class. It specifies the desired polynomial
                                 // degree of the finite elements and
                                 // associates the DoFHandler to the
                                 // triangulation just as in the previous
                                 // example program, step-3:
 template <int dim>
-LaplaceProblem<dim>::LaplaceProblem ()
+Step4<dim>::Step4 ()
                :
                 fe (1),
                dof_handler (triangulation)
 {}
 
 
-                                 // @sect4{LaplaceProblem::make_grid_and_dofs}
+                                 // @sect4{Step4::make_grid}
 
                                 // Grid creation is something inherently
                                 // dimension dependent. However, as long as
@@ -306,7 +307,7 @@ LaplaceProblem<dim>::LaplaceProblem ()
                                 // solve on the square $[-1,1]\times [-1,1]$
                                 // in 2D, or on the cube $[-1,1] \times
                                 // [-1,1] \times [-1,1]$ in 3D; both can be
-                                // termed <code>hyper_cube</code>, so we may
+                                // termed GridGenerator::hyper_cube(), so we may
                                 // use the same function in whatever
                                 // dimension we are. Of course, the functions
                                 // that create a hypercube in two and three
@@ -314,22 +315,8 @@ LaplaceProblem<dim>::LaplaceProblem ()
                                 // that is something you need not care
                                 // about. Let the library handle the
                                 // difficult things.
-                                //
-                                // Likewise, associating a degree of freedom
-                                // with each vertex is something which
-                                // certainly looks different in 2D and 3D,
-                                // but that does not need to bother you
-                                // either. This function therefore looks
-                                // exactly like in the previous example,
-                                // although it performs actions that in their
-                                // details are quite different if
-                                // <code>dim</code> happens to be 3. The only
-                                // significant difference from a user's
-                                // perspective is the number of cells
-                                // resulting, which is much higher in three
-                                // than in two space dimensions!
 template <int dim>
-void LaplaceProblem<dim>::make_grid_and_dofs ()
+void Step4<dim>::make_grid ()
 {
   GridGenerator::hyper_cube (triangulation, -1, 1);
   triangulation.refine_global (4);
@@ -340,7 +327,22 @@ void LaplaceProblem<dim>::make_grid_and_dofs ()
            << "   Total number of cells: "
            << triangulation.n_cells()
            << std::endl;
+}
+
+                                 // @sect4{Step4::setup_system}
 
+                                // This function looks
+                                // exactly like in the previous example,
+                                // although it performs actions that in their
+                                // details are quite different if
+                                // <code>dim</code> happens to be 3. The only
+                                // significant difference from a user's
+                                // perspective is the number of cells
+                                // resulting, which is much higher in three
+                                // than in two space dimensions!
+template <int dim>
+void Step4<dim>::setup_system ()
+{
   dof_handler.distribute_dofs (fe);
 
   std::cout << "   Number of degrees of freedom: "
@@ -358,7 +360,7 @@ void LaplaceProblem<dim>::make_grid_and_dofs ()
 }
 
 
-                                 // @sect4{LaplaceProblem::assemble_system}
+                                 // @sect4{Step4::assemble_system}
 
                                 // Unlike in the previous example, we
                                 // would now like to use a
@@ -391,7 +393,7 @@ void LaplaceProblem<dim>::make_grid_and_dofs ()
                                 // don't have to care about most
                                 // things.
 template <int dim>
-void LaplaceProblem<dim>::assemble_system () 
+void Step4<dim>::assemble_system () 
 {  
   QGauss<dim>  quadrature_formula(2);
 
@@ -411,12 +413,12 @@ void LaplaceProblem<dim>::assemble_system ()
                                   // presently on (previously, we only
                                   // required values and gradients of the
                                   // shape function from the
-                                  // <code>FEValues</code> object, as well as
+                                  // FEValues object, as well as
                                   // the quadrature weights,
-                                  // <code>JxW</code>). We can tell the
-                                  // <code>FEValues</code> object to do for
+                                  // FEValues::JxW() ). We can tell the
+                                  // FEValues object to do for
                                   // us by also giving it the
-                                  // <code>update_quadrature_points</code>
+                                  // #update_quadrature_points
                                   // flag:
   FEValues<dim> fe_values (fe, quadrature_formula, 
                           update_values   | update_gradients |
@@ -551,7 +553,7 @@ void LaplaceProblem<dim>::assemble_system ()
                                   // values in this example, unlike the one
                                   // before. This is a simple task, we only
                                   // have to replace the
-                                  // <code>ZeroFunction</code> used there by
+                                  // ZeroFunction used there by
                                   // an object of the class which describes
                                   // the boundary values we would like to use
                                   // (i.e. the <code>BoundaryValues</code>
@@ -568,7 +570,7 @@ void LaplaceProblem<dim>::assemble_system ()
 }
 
 
-                                 // @sect4{LaplaceProblem::solve}
+                                 // @sect4{Step4::solve}
 
                                 // Solving the linear system of
                                 // equations is something that looks
@@ -578,7 +580,7 @@ void LaplaceProblem<dim>::assemble_system ()
                                 // function is copied verbatim from the
                                 // previous example.
 template <int dim>
-void LaplaceProblem<dim>::solve () 
+void Step4<dim>::solve () 
 {
   SolverControl           solver_control (1000, 1e-12);
   SolverCG<>              solver (solver_control);
@@ -596,7 +598,7 @@ void LaplaceProblem<dim>::solve ()
 }
 
 
-                                 // @sect4{LaplaceProblem::output_results}
+                                 // @sect4{Step4::output_results}
 
                                 // This function also does what the
                                 // respective one did in step-3. No changes
@@ -625,7 +627,7 @@ void LaplaceProblem<dim>::solve ()
                                  // than 2 or 3, but we neglect this here for
                                  // the sake of brevity).
 template <int dim>
-void LaplaceProblem<dim>::output_results () const
+void Step4<dim>::output_results () const
 {
   DataOut<dim> data_out;
 
@@ -642,7 +644,7 @@ void LaplaceProblem<dim>::output_results () const
 
 
 
-                                 // @sect4{LaplaceProblem::run}
+                                 // @sect4{Step4::run}
 
                                  // This is the function which has the
                                 // top-level control over
@@ -650,11 +652,12 @@ void LaplaceProblem<dim>::output_results () const
                                 // additional output, it is the same
                                 // as for the previous example.
 template <int dim>
-void LaplaceProblem<dim>::run () 
+void Step4<dim>::run () 
 {
   std::cout << "Solving problem in " << dim << " space dimensions." << std::endl;
   
-  make_grid_and_dofs();
+  make_grid();
+  setup_system ();
   assemble_system ();
   solve ();
   output_results ();
@@ -667,7 +670,7 @@ void LaplaceProblem<dim>::run ()
                                 // looks mostly like in step-3, but if you
                                 // look at the code below, note how we first
                                 // create a variable of type
-                                // <code>LaplaceProblem@<2@></code> (forcing
+                                // <code>Step4@<2@></code> (forcing
                                 // the compiler to compile the class template
                                 // with <code>dim</code> replaced by
                                 // <code>2</code>) and run a 2d simulation,
@@ -740,12 +743,12 @@ int main ()
 {
   deallog.depth_console (0);
   {
-    LaplaceProblem<2> laplace_problem_2d;
+    Step4<2> laplace_problem_2d;
     laplace_problem_2d.run ();
   }
   
   {
-    LaplaceProblem<3> laplace_problem_3d;
+    Step4<3> laplace_problem_3d;
     laplace_problem_3d.run ();
   }
   

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.