]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Fix offensive formula
authorkanschat <kanschat@0785d39b-7218-0410-832d-ea1e28bc413d>
Wed, 13 Mar 2013 20:17:20 +0000 (20:17 +0000)
committerkanschat <kanschat@0785d39b-7218-0410-832d-ea1e28bc413d>
Wed, 13 Mar 2013 20:17:20 +0000 (20:17 +0000)
git-svn-id: https://svn.dealii.org/trunk@28890 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-42/doc/intro-step-42.tex

index 17767acd1481940685c4af44c9f5213b9dc47076..a6c6b1f75269582ec6922c38483eccae0e663708 100644 (file)
@@ -230,7 +230,7 @@ problem. Again we do so to gain a formulation that allows us to solve a linear
 system of equations finally.\\
 We introduce a Lagrange multiplier $\lambda$ and the convex cone $K\subset W'$,
 $W'$ dual space of the trace space $W:=\left[ H_0^{\frac{1}{2}}(\Gamma_C)
-\right]^{\textrm{dim}$ of $V$ restricted to $\Gamma_C$, $$K:=\{\mu\in W':\mu_T = 0,\quad\langle\mu n,v\rangle_{\Gamma_C}\geq 0,\quad
+\right]^{\textrm{dim}}$ of $V$ restricted to $\Gamma_C$, $$K:=\{\mu\in W':\mu_T = 0,\quad\langle\mu n,v\rangle_{\Gamma_C}\geq 0,\quad
 \forall v\in H_0^{\frac{1}{2}}(\Gamma_C), v \ge 0\text{ on }\Gamma_C \}$$
 of Lagrange multipliers, where $\langle\cdot,\cdot\rangle$
 denotes the duality pairing, i.e. a boundary integral, between $W'$ and $W$.

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.