]> https://gitweb.dealii.org/ - dealii.git/commitdiff
git-svn-id: https://svn.dealii.org/trunk@23137 0785d39b-7218-0410-832d-ea1e28bc413d
authorAndrea Bonito <andrea.bonito.ch@gmail.com>
Thu, 6 Jan 2011 15:55:00 +0000 (15:55 +0000)
committerAndrea Bonito <andrea.bonito.ch@gmail.com>
Thu, 6 Jan 2011 15:55:00 +0000 (15:55 +0000)
deal.II/examples/step-38/doc/intro.dox

index dc10b5df6f283de2694b2e436c36b9e65764c833..b8b40fc867792e17c3a6caa81c3daaa0242ca790 100644 (file)
@@ -55,7 +55,7 @@ Since $\Delta_S = \nabla_S \cdot \nabla_S$, we deduce
 @f[
 \Delta_S v = \Delta \tilde v - \mathbf n^T \ D^2 \tilde v \ \mathbf n - (\mathbf n \cdot \nabla \tilde v) (\nabla \cdot \mathbf n - \mathbf n^T \ D \mathbf n \ \mathbf n ).
 @f]
-Worth mentioning, the term $\nabla^T \cdot \mathbf n - \mathbf n \ D \mathbf n \ \mathbf n$ appearing in the above expression is the total curvature of the surface (sum of principal curvatures).
+Worth mentioning, the term $\nabla \cdot \mathbf n - \mathbf n \ D \mathbf n \ \mathbf n$ appearing in the above expression is the total curvature of the surface (sum of principal curvatures).
 
 As usual, we are only interested in weak solutions for which we can use $C^0$
 finite elements (rather than requiring $C^1$ continuity as for strong

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.