/**
* Compute the Frobenius norm of this form, i.e., the expression
* $\sqrt{\sum_{ij} |DF_{ij}|^2} =
- * \sqrt{\sum_{ij} |\frac{\partial F_i}{\partial x_j}|}$.
+ * \sqrt{\sum_{ij} |\frac{\partial F_i}{\partial x_j}|^2}$.
*/
typename numbers::NumberTraits<Number>::real_type
norm() const;
* Assuming that the current object stores the Jacobian of a mapping
* $\mathbf F$, then the current function computes the <i>covariant</i> form
* of the derivative, namely $(\nabla \mathbf F) {\mathbf G}^{-1}$, where
- * $\mathbf G = (\nabla \mathbf F)^{T}*(\nabla \mathbf F)$. If $\nabla \mathbf
+ * $\mathbf G = (\nabla \mathbf F)^{T}(\nabla \mathbf F)$. If $\nabla \mathbf
* F$ is a square matrix (i.e., $\mathbf F:
* {\mathbb R}^n \mapsto {\mathbb R}^n$), then this function
* simplifies to computing $\nabla {\mathbf F}^{-T}$.