]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Added an implementation of the polynomials for the Arnold Boffi Falk
authoroliver <oliver@0785d39b-7218-0410-832d-ea1e28bc413d>
Tue, 25 Apr 2006 19:03:12 +0000 (19:03 +0000)
committeroliver <oliver@0785d39b-7218-0410-832d-ea1e28bc413d>
Tue, 25 Apr 2006 19:03:12 +0000 (19:03 +0000)
spaces.

git-svn-id: https://svn.dealii.org/trunk@12890 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/base/source/polynomials_abf.cc [new file with mode: 0644]

diff --git a/deal.II/base/source/polynomials_abf.cc b/deal.II/base/source/polynomials_abf.cc
new file mode 100644 (file)
index 0000000..e095163
--- /dev/null
@@ -0,0 +1,118 @@
+//---------------------------------------------------------------------------
+//    $Id$
+//    Version: $Name$
+//
+//    Copyright (C) 2004, 2005 by the deal.II authors
+//
+//    This file is subject to QPL and may not be  distributed
+//    without copyright and license information. Please refer
+//    to the file deal.II/doc/license.html for the  text  and
+//    further information on this license.
+//
+//---------------------------------------------------------------------------
+
+#include <base/polynomials_abf.h>
+#include <base/quadrature_lib.h>
+#include <iostream>
+#include <iomanip>
+using namespace std;
+using namespace Polynomials;
+
+
+template <int dim>
+PolynomialsABF<dim>::PolynomialsABF (const unsigned int k)
+               :
+               my_degree(k),
+               n_pols(compute_n_pols(k))
+{
+  std::vector<std::vector< Polynomials::Polynomial< double > > > pols(dim);
+  pols[0] = Polynomials::LagrangeEquidistant::generate_complete_basis(k+2);
+  if (k == 0)
+    for (unsigned int d=1;d<dim;++d)
+      pols[d] = Polynomials::Legendre::generate_complete_basis(0);
+  else
+    for (unsigned int d=1;d<dim;++d)
+      pols[d] = Polynomials::LagrangeEquidistant::generate_complete_basis(k);
+  polynomial_space = new AnisotropicPolynomials<dim>(pols);
+}
+
+
+template <int dim>
+PolynomialsABF<dim>::~PolynomialsABF ()
+{
+  delete polynomial_space;
+}
+
+
+template <int dim>
+void
+PolynomialsABF<dim>::compute (const Point<dim>            &unit_point,
+                             std::vector<Tensor<1,dim> > &values,
+                             std::vector<Tensor<2,dim> > &grads,
+                             std::vector<Tensor<3,dim> > &grad_grads) const
+{
+  Assert(values.size()==n_pols || values.size()==0,
+        ExcDimensionMismatch(values.size(), n_pols));
+  Assert(grads.size()==n_pols|| grads.size()==0,
+        ExcDimensionMismatch(grads.size(), n_pols));
+  Assert(grad_grads.size()==n_pols|| grad_grads.size()==0,
+        ExcDimensionMismatch(grad_grads.size(), n_pols));
+
+  const unsigned int n_sub = polynomial_space->n();
+  p_values.resize((values.size() == 0) ? 0 : n_sub);
+  p_grads.resize((grads.size() == 0) ? 0 : n_sub);
+  p_grad_grads.resize((grad_grads.size() == 0) ? 0 : n_sub);
+  
+  for (unsigned int d=0;d<dim;++d)
+    {
+                                      // First we copy the point. The
+                                      // polynomial space for
+                                      // component d consists of
+                                      // polynomials of degree k+1 in
+                                      // x_d and degree k in the
+                                      // other variables. in order to
+                                      // simplify this, we use the
+                                      // same AnisotropicPolynomial
+                                      // space and simply rotate the
+                                      // coordinates through all
+                                      // directions.
+      Point<dim> p;
+      for (unsigned int c=0;c<dim;++c)
+       p(c) = unit_point((c+d)%dim);
+      
+      polynomial_space->compute (p, p_values, p_grads, p_grad_grads);
+      
+      for (unsigned int i=0;i<p_values.size();++i)
+         values[i+d*n_sub][d] = p_values[i];
+      
+      for (unsigned int i=0;i<p_grads.size();++i)
+       for (unsigned int d1=0;d1<dim;++d1)
+         grads[i+d*n_sub][d][(d1+d)%dim] = p_grads[i][d1];
+      
+      for (unsigned int i=0;i<p_grad_grads.size();++i)
+       for (unsigned int d1=0;d1<dim;++d1)
+         for (unsigned int d2=0;d2<dim;++d2)
+           grad_grads[i+d*n_sub][d][(d1+d)%dim][(d2+d)%dim]
+             = p_grad_grads[i][d1][d2];
+    }
+}
+
+
+template <int dim>
+unsigned int
+PolynomialsABF<dim>::compute_n_pols(unsigned int k)
+{
+  if (dim == 1) return k+1;
+  if (dim == 2) return 2*(k+1)*(k+3);
+  //TODO:Check what are the correct numbers ...
+  if (dim == 3) return 3*(k+1)*(k+1)*(k+2);
+  
+  Assert(false, ExcNotImplemented());
+  return 0;
+}
+
+
+template class PolynomialsABF<1>;
+template class PolynomialsABF<2>;
+template class PolynomialsABF<3>;
+

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.