]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Duplicate code for inversion of matrices to avoid dependency to liblac
authorwolf <wolf@0785d39b-7218-0410-832d-ea1e28bc413d>
Wed, 20 Jul 2005 00:34:59 +0000 (00:34 +0000)
committerwolf <wolf@0785d39b-7218-0410-832d-ea1e28bc413d>
Wed, 20 Jul 2005 00:34:59 +0000 (00:34 +0000)
git-svn-id: https://svn.dealii.org/trunk@11180 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/base/source/symmetric_tensor.cc

index 2ecfc291e81b88d1a862ba24367bd74218746537..47a686a485c410ca463b0b8cc1c86d083ae83337 100644 (file)
 
 
 #include <base/symmetric_tensor.h>
-#include <lac/full_matrix.h>
+
 
 template <>
 SymmetricTensor<4,3>
 invert (const SymmetricTensor<4,3> &t)
 {
-  SymmetricTensor<4,3> tmp;
+  SymmetricTensor<4,3> tmp = t;
 
                                    // this function follows the exact same
                                    // scheme as the 2d case, except that
                                    // hardcoding the inverse of a 6x6 matrix
                                    // is pretty wasteful. instead, we use the
                                    // Gauss-Jordan algorithm implemented for
-                                   // FullMatrix
-  FullMatrix<double> m(6,6);
-  for (unsigned int i=0; i<6; ++i)
-    for (unsigned int j=0; j<6; ++j)
-      m(i,j) = t.data[i][j];
-  m.gauss_jordan ();
-
-                                   // copy back and scale rows and
-                                   // columns. the mult matrix here is diag[1,
-                                   // 1, 1, 1/2, 1/2, 1/2]
-  for (unsigned int i=0; i<3; ++i)
-    for (unsigned int j=0; j<3; ++j)
-      tmp.data[i][j] = m(i,j);
+                                   // FullMatrix; the following code is copied
+                                   // from there because using the FullMatrix
+                                   // class would introduce circular
+                                   // references between libbase and liblac
+  const unsigned int N = 6;
+
+                                  // first get an estimate of the
+                                  // size of the elements of this
+                                  // matrix, for later checks whether
+                                  // the pivot element is large
+                                  // enough, or whether we have to
+                                  // fear that the matrix is not
+                                  // regular
+  double diagonal_sum = 0;
+  for (unsigned int i=0; i<N; ++i)
+    diagonal_sum += std::fabs(tmp.data[i][i]);
+  const double typical_diagonal_element = diagonal_sum/N;
+  
+  unsigned int p[N];
+  for (unsigned int i=0; i<N; ++i)
+    p[i] = i;
+
+  for (unsigned int j=0; j<N; ++j)
+    {
+                                      // pivot search: search that
+                                      // part of the line on and
+                                      // right of the diagonal for
+                                      // the largest element
+      double       max = std::fabs(tmp.data[j][j]);
+      unsigned int r   = j;
+      for (unsigned int i=j+1; i<N; ++i)
+        if (std::fabs(tmp.data[i][j]) > max)
+          {
+            max = std::fabs(tmp.data[i][j]);
+            r = i;
+          }
+                                      // check whether the pivot is
+                                      // too small
+      Assert(max > 1.e-16*typical_diagonal_element,
+            ExcMessage("This tensor seems to be noninvertible"));
+      
+                                      // row interchange
+      if (r>j)
+       {
+         for (unsigned int k=0; k<N; ++k)
+           std::swap (tmp.data[j][k], tmp.data[r][k]);
+
+         std::swap (p[j], p[r]);
+       }
+
+                                      // transformation
+      const double hr = 1./tmp.data[j][j];
+      tmp.data[j][j] = hr;
+      for (unsigned int k=0; k<N; ++k)
+       {
+         if (k==j) continue;
+         for (unsigned int i=0; i<N; ++i)
+           {
+             if (i==j) continue;
+             tmp.data[i][k] -= tmp.data[i][j]*tmp.data[j][k]*hr;
+           }
+       }
+      for (unsigned int i=0; i<N; ++i)
+       {
+         tmp.data[i][j] *= hr;
+         tmp.data[j][i] *= -hr;
+       }
+      tmp.data[j][j] = hr;
+    }
+                                  // column interchange
+  double hv[N];
+  for (unsigned int i=0; i<N; ++i)
+    {
+      for (unsigned int k=0; k<N; ++k)
+       hv[p[k]] = tmp.data[i][k];
+      for (unsigned int k=0; k<N; ++k)
+       tmp.data[i][k] = hv[k];
+    }
 
+                                   // scale rows and columns. the mult matrix
+                                   // here is diag[1, 1, 1, 1/2, 1/2, 1/2]
   for (unsigned int i=3; i<6; ++i)
     for (unsigned int j=0; j<3; ++j)
-      tmp.data[i][j] = m(i,j) / 2;
+      tmp.data[i][j] /= 2;
 
   for (unsigned int i=0; i<3; ++i)
     for (unsigned int j=3; j<6; ++j)
-      tmp.data[i][j] = m(i,j) / 2;
+      tmp.data[i][j] /= 2;
 
   for (unsigned int i=3; i<6; ++i)
     for (unsigned int j=3; j<6; ++j)
-      tmp.data[i][j] = m(i,j) / 4;
+      tmp.data[i][j] /= 4;
   
   return tmp;
 }

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.