// do various post convergence tasks
// here:
//
- // First, we update the time and
- // produce graphical output if so
- // desired. Then we update a predictor
- // for the solution at the next time
- // step by approximating $\mathbf
- // w^{n+1}\approx \frac 32 \mathbf w^n
- // -\frac 12 \mathbf w^{n-1}$ to try
- // and make adaptivity work better.
- // The idea is to try and refine ahead
- // of a front, rather than stepping
- // into a coarse set of elements and
- // smearing the old_solution. This
- // simple time extrapolator does the
- // job. With this, we then refine the
- // mesh if so desired by the user, and
- // finally continue on with the next
- // time step:
+ // First, we update the time
+ // and produce graphical output
+ // if so desired. Then we
+ // update a predictor for the
+ // solution at the next time
+ // step by approximating
+ // $\mathbf w^{n+1}\approx
+ // \mathbf w^n + \delta t
+ // \frac{\partial \mathbf
+ // w}{\partial t} \approx
+ // \mathbf w^n + \delta t \;
+ // \frac{\mathbf w^n-\mathbf
+ // w^{n-1}}{\delta t} = 2
+ // \mathbf w^n - \mathbf
+ // w^{n-1}$ to try and make
+ // adaptivity work better. The
+ // idea is to try and refine
+ // ahead of a front, rather
+ // than stepping into a coarse
+ // set of elements and smearing
+ // the old_solution. This
+ // simple time extrapolator
+ // does the job. With this, we
+ // then refine the mesh if so
+ // desired by the user, and
+ // finally continue on with the
+ // next time step:
time += parameters.time_step;
if (parameters.output_step < 0)