<h3>Specific improvements</h3>
<ol>
+ <li> New: Add MatrixFreeOperators::LaplaceOperator representing a Laplace matrix.
+ <br>
+ (Denis Davydov, 2016/10/30)
+ </li>
+
<li> New: Add VectorTools::project() to do L2 projection
of scalar-valued quadrature point data in parallel.
<br>
+ /**
+ * This class implements the operation of the action of a Laplace matrix,
+ * namely $ L_{ij} = \int_\Omega c(\mathbf x) \mathbf \nabla N_i(\mathbf x) \cdot \mathbf \nabla N_j(\mathbf x)\,d \mathbf x$,
+ * where $c(\mathbf x)$ is the scalar heterogeneity coefficient.
+ *
+ * @author Denis Davydov, 2016
+ */
+ template <int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components = 1, typename Number = double>
+ class LaplaceOperator : public Base<dim, Number>
+ {
+ public:
+
+ /**
+ * Constructor.
+ */
+ LaplaceOperator ();
+
+ /**
+ * The diagonal is approximated by computing a local diagonal matrix per element
+ * and distributing it to the global diagonal. This will lead to wrong results
+ * on element with hanging nodes but is still an acceptable approximation
+ * to be used in preconditioners.
+ */
+ virtual void compute_diagonal ();
+
+ /**
+ * Set the heterogeneous scalar coefficient @p scalar_coefficient to be used at
+ * the quadrature points. The Table should be of correct size, consistent
+ * with the total number of quadrature points in <code>dim</code>-dimensions,
+ * controlled by the @p n_q_points_1d template parameter. Here,
+ * <code>(*scalar_coefficient)(cell,q)</code> corresponds to the value of the
+ * coefficient, where <code>cell</code> is an index into a set of cell
+ * batches as administered by the MatrixFree framework (which does not work
+ * on individual cells, but instead of batches of cells at once), and
+ * <code>q</code> is the number of the quadrature point within this batch.
+ *
+ * Such tables can be initialized by
+ * @code
+ * std_cxx11::shared_ptr<Table<2, VectorizedArray<double> > > coefficient;
+ * coefficient = std_cxx11::make_shared<Table<2, VectorizedArray<double> > >();
+ * {
+ * FEEvaluation<dim,fe_degree,n_q_points_1d,1,double> fe_eval(mf_data);
+ * const unsigned int n_cells = mf_data.n_macro_cells();
+ * const unsigned int n_q_points = fe_eval.n_q_points;
+ * coefficient->reinit(n_cells, n_q_points);
+ * for (unsigned int cell=0; cell<n_cells; ++cell)
+ * {
+ * fe_eval.reinit(cell);
+ * for (unsigned int q=0; q<n_q_points; ++q)
+ * (*coefficient)(cell,q) = function.value(fe_eval.quadrature_point(q));
+ * }
+ * }
+ * @endcode
+ * where <code>mf_data</code> is a MatrixFree object and <code>function</code>
+ * is a function which provides the following method
+ * <code>VectorizedArray<double> value(const Point<dim, VectorizedArray<double> > &p_vec)</code>.
+ *
+ * If this function is not called, the coefficient is assumed to be unity.
+ *
+ * The argument to this function is a shared pointer to such a table. The
+ * class stores the shared pointer to this table, not a deep copy
+ * and uses it to form the Laplace matrix. Consequently, you can update the
+ * table and re-use the current object to obtain the action of a Laplace
+ * matrix with this updated coefficient. Alternatively, if the table values
+ * are only to be filled once, the original shared pointer can also go out
+ * of scope in user code and the clear() command or destructor of this class
+ * will delete the table.
+ */
+ void set_coefficient(const std_cxx11::shared_ptr<Table<2, VectorizedArray<Number> > > &scalar_coefficient );
+
+ virtual void clear();
+
+ /**
+ * Read/Write access to coefficients to be used in Laplace operator.
+ *
+ * The function will throw an error if coefficients are not previously set
+ * by set_coefficient() function.
+ */
+ std_cxx11::shared_ptr< Table<2, VectorizedArray<Number> > > get_coefficient();
+
+ private:
+ /**
+ * Applies the laplace matrix operation on an input vector. It is
+ * assumed that the passed input and output vector are correctly initialized
+ * using initialize_dof_vector().
+ */
+ virtual void apply_add (LinearAlgebra::distributed::Vector<Number> &dst,
+ const LinearAlgebra::distributed::Vector<Number> &src) const;
+
+ /**
+ * Applies the Laplace operator on a cell.
+ */
+ void local_apply_cell (const MatrixFree<dim,Number> &data,
+ LinearAlgebra::distributed::Vector<Number> &dst,
+ const LinearAlgebra::distributed::Vector<Number> &src,
+ const std::pair<unsigned int,unsigned int> &cell_range) const;
+
+ /**
+ * Apply diagonal part of the Laplace operator on a cell.
+ */
+ void local_diagonal_cell (const MatrixFree<dim,Number> &data,
+ LinearAlgebra::distributed::Vector<Number> &dst,
+ const unsigned int &,
+ const std::pair<unsigned int,unsigned int> &cell_range) const;
+
+ /**
+ * Apply Laplace operator on a cell @p cell.
+ */
+ void do_operation_on_cell(FEEvaluation<dim,fe_degree,n_q_points_1d,n_components,Number> &phi,
+ const unsigned int cell) const;
+
+ /**
+ * User-provided heterogeneity coefficient.
+ */
+ std_cxx11::shared_ptr< Table<2, VectorizedArray<Number> > > scalar_coefficient;
+ };
+
+
+
// ------------------------------------ inline functions ---------------------
template <int dim, int fe_degree, int n_components, typename Number>
}
}
+
+ //-----------------------------LaplaceOperator----------------------------------
+
+ template <int dim, int fe_degree, int n_q_points_1d, int n_components, typename Number>
+ LaplaceOperator<dim, fe_degree, n_q_points_1d, n_components, Number>::
+ LaplaceOperator ()
+ :
+ Base<dim, Number>()
+ {
+ }
+
+
+
+ template <int dim, int fe_degree, int n_q_points_1d, int n_components, typename Number>
+ void
+ LaplaceOperator<dim, fe_degree, n_q_points_1d, n_components, Number>::
+ clear ()
+ {
+ Base<dim, Number>::clear();
+ scalar_coefficient = NULL;
+ }
+
+
+
+ template <int dim, int fe_degree, int n_q_points_1d, int n_components, typename Number>
+ void
+ LaplaceOperator<dim, fe_degree, n_q_points_1d, n_components, Number>::
+ set_coefficient(const std_cxx11::shared_ptr<Table<2, VectorizedArray<Number> > > &scalar_coefficient_ )
+ {
+ scalar_coefficient = scalar_coefficient_;
+ }
+
+
+
+ template <int dim, int fe_degree, int n_q_points_1d, int n_components, typename Number>
+ std_cxx11::shared_ptr< Table<2, VectorizedArray<Number> > >
+ LaplaceOperator<dim, fe_degree, n_q_points_1d, n_components, Number>::
+ get_coefficient()
+ {
+ Assert (scalar_coefficient.get(),
+ ExcNotInitialized());
+ return scalar_coefficient;
+ }
+
+
+
+ template <int dim, int fe_degree, int n_q_points_1d, int n_components, typename Number>
+ void
+ LaplaceOperator<dim, fe_degree, n_q_points_1d, n_components, Number>::
+ compute_diagonal()
+ {
+ Assert((Base<dim, Number>::data != NULL), ExcNotInitialized());
+
+ unsigned int dummy = 0;
+ LinearAlgebra::distributed::Vector<Number> &inverse_diagonal_entries = Base<dim,Number>::inverse_diagonal_entries;
+ this->initialize_dof_vector(inverse_diagonal_entries);
+ Base<dim,Number>::
+ data->cell_loop (&LaplaceOperator::local_diagonal_cell,
+ this, inverse_diagonal_entries, dummy);
+
+ this->set_constrained_entries_to_one(inverse_diagonal_entries);
+
+ for (unsigned int i=0; i<inverse_diagonal_entries.local_size(); ++i)
+ if (std::abs(inverse_diagonal_entries.local_element(i)) > std::sqrt(std::numeric_limits<Number>::epsilon()))
+ inverse_diagonal_entries.local_element(i) = 1./inverse_diagonal_entries.local_element(i);
+ else
+ inverse_diagonal_entries.local_element(i) = 1.;
+
+ Base<dim, Number>::inverse_diagonal_entries.compress(VectorOperation::insert);
+ Base<dim, Number>::inverse_diagonal_entries.update_ghost_values();
+ }
+
+
+
+ template <int dim, int fe_degree, int n_q_points_1d, int n_components, typename Number>
+ void
+ LaplaceOperator<dim, fe_degree, n_q_points_1d, n_components, Number>::
+ apply_add (LinearAlgebra::distributed::Vector<Number> &dst,
+ const LinearAlgebra::distributed::Vector<Number> &src) const
+ {
+ Base<dim, Number>::data->cell_loop (&LaplaceOperator::local_apply_cell,
+ this, dst, src);
+ }
+
+ namespace
+ {
+ template<typename Number>
+ bool
+ non_negative(const VectorizedArray<Number> &n)
+ {
+ for (unsigned int v=0; v<VectorizedArray<Number>::n_array_elements; ++v)
+ if (n[v] < 0.)
+ return false;
+
+ return true;
+ }
+ }
+
+
+
+ template <int dim, int fe_degree, int n_q_points_1d, int n_components, typename Number>
+ void
+ LaplaceOperator<dim, fe_degree, n_q_points_1d, n_components, Number>::
+ do_operation_on_cell(FEEvaluation<dim,fe_degree,n_q_points_1d,n_components,Number> &phi,
+ const unsigned int cell) const
+ {
+ phi.evaluate (false,true,false);
+ if (scalar_coefficient.get())
+ {
+ for (unsigned int q=0; q<phi.n_q_points; ++q)
+ {
+ Assert (non_negative((*scalar_coefficient)(cell,q)),
+ ExcMessage("Coefficient must be non-negative"));
+ phi.submit_gradient ((*scalar_coefficient)(cell,q)*phi.get_gradient(q), q);
+ }
+ }
+ else
+ {
+ for (unsigned int q=0; q<phi.n_q_points; ++q)
+ {
+ phi.submit_gradient (phi.get_gradient(q), q);
+ }
+ }
+ phi.integrate (false,true);
+ }
+
+
+
+
+ template <int dim, int fe_degree, int n_q_points_1d, int n_components, typename Number>
+ void
+ LaplaceOperator<dim, fe_degree, n_q_points_1d, n_components, Number>::
+ local_apply_cell (const MatrixFree<dim,Number> &data,
+ LinearAlgebra::distributed::Vector<Number> &dst,
+ const LinearAlgebra::distributed::Vector<Number> &src,
+ const std::pair<unsigned int,unsigned int> &cell_range) const
+ {
+ FEEvaluation<dim,fe_degree,n_q_points_1d,n_components,Number> phi (data);
+ for (unsigned int cell=cell_range.first; cell<cell_range.second; ++cell)
+ {
+ phi.reinit (cell);
+ phi.read_dof_values(src);
+ do_operation_on_cell(phi,cell);
+ phi.distribute_local_to_global (dst);
+ }
+ }
+
+
+ template <int dim, int fe_degree, int n_q_points_1d, int n_components, typename Number>
+ void
+ LaplaceOperator<dim, fe_degree, n_q_points_1d, n_components, Number>::
+ local_diagonal_cell (const MatrixFree<dim,Number> &data,
+ LinearAlgebra::distributed::Vector<Number> &dst,
+ const unsigned int &,
+ const std::pair<unsigned int,unsigned int> &cell_range) const
+ {
+ FEEvaluation<dim,fe_degree,n_q_points_1d,n_components,Number> phi (data);
+ for (unsigned int cell=cell_range.first; cell<cell_range.second; ++cell)
+ {
+ phi.reinit (cell);
+ VectorizedArray<Number> local_diagonal_vector[phi.tensor_dofs_per_cell];
+ for (unsigned int i=0; i<phi.dofs_per_cell; ++i)
+ {
+ for (unsigned int j=0; j<phi.dofs_per_cell; ++j)
+ phi.begin_dof_values()[j] = VectorizedArray<Number>();
+ phi.begin_dof_values()[i] = 1.;
+ do_operation_on_cell(phi,cell);
+ local_diagonal_vector[i] = phi.begin_dof_values()[i];
+ }
+ for (unsigned int i=0; i<phi.tensor_dofs_per_cell; ++i)
+ phi.begin_dof_values()[i] = local_diagonal_vector[i];
+ phi.distribute_local_to_global (dst);
+ }
+ }
+
+
} // end of namespace MatrixFreeOperators
--- /dev/null
+// ---------------------------------------------------------------------
+//
+// Copyright (C) 2016 by the deal.II authors
+//
+// This file is part of the deal.II library.
+//
+// The deal.II library is free software; you can use it, redistribute
+// it, and/or modify it under the terms of the GNU Lesser General
+// Public License as published by the Free Software Foundation; either
+// version 2.1 of the License, or (at your option) any later version.
+// The full text of the license can be found in the file LICENSE at
+// the top level of the deal.II distribution.
+//
+// ---------------------------------------------------------------------
+
+
+
+// This is the same as mass_operator_01.cc, but tests Laplace operator instead.
+
+#include "../tests.h"
+
+#include <deal.II/base/logstream.h>
+#include <deal.II/base/utilities.h>
+#include <deal.II/base/function.h>
+#include <deal.II/distributed/tria.h>
+#include <deal.II/grid/grid_generator.h>
+#include <deal.II/grid/tria_boundary_lib.h>
+#include <deal.II/dofs/dof_tools.h>
+#include <deal.II/dofs/dof_handler.h>
+#include <deal.II/lac/constraint_matrix.h>
+#include <deal.II/lac/trilinos_sparse_matrix.h>
+#include <deal.II/lac/trilinos_sparsity_pattern.h>
+#include <deal.II/matrix_free/operators.h>
+#include <deal.II/fe/fe_q.h>
+#include <deal.II/fe/fe_values.h>
+#include <deal.II/numerics/vector_tools.h>
+
+#include <iostream>
+
+
+
+
+template <int dim, int fe_degree>
+void test ()
+{
+ typedef double number;
+
+ parallel::distributed::Triangulation<dim> tria (MPI_COMM_WORLD);
+ GridGenerator::hyper_cube (tria);
+ tria.refine_global(1);
+ typename Triangulation<dim>::active_cell_iterator
+ cell = tria.begin_active (),
+ endc = tria.end();
+ cell = tria.begin_active ();
+ for (; cell!=endc; ++cell)
+ if (cell->is_locally_owned())
+ if (cell->center().norm()<0.2)
+ cell->set_refine_flag();
+ tria.execute_coarsening_and_refinement();
+ if (dim < 3 && fe_degree < 2)
+ tria.refine_global(2);
+ else
+ tria.refine_global(1);
+ if (tria.begin(tria.n_levels()-1)->is_locally_owned())
+ tria.begin(tria.n_levels()-1)->set_refine_flag();
+ if (tria.last()->is_locally_owned())
+ tria.last()->set_refine_flag();
+ tria.execute_coarsening_and_refinement();
+ cell = tria.begin_active ();
+ for (unsigned int i=0; i<10-3*dim; ++i)
+ {
+ cell = tria.begin_active ();
+ unsigned int counter = 0;
+ for (; cell!=endc; ++cell, ++counter)
+ if (cell->is_locally_owned())
+ if (counter % (7-i) == 0)
+ cell->set_refine_flag();
+ tria.execute_coarsening_and_refinement();
+ }
+
+ FE_Q<dim> fe (fe_degree);
+ DoFHandler<dim> dof (tria);
+ dof.distribute_dofs(fe);
+
+ IndexSet owned_set = dof.locally_owned_dofs();
+ IndexSet relevant_set;
+ DoFTools::extract_locally_relevant_dofs (dof, relevant_set);
+
+ ConstraintMatrix constraints (relevant_set);
+ DoFTools::make_hanging_node_constraints(dof, constraints);
+ VectorTools::interpolate_boundary_values (dof, 0, ZeroFunction<dim>(),
+ constraints);
+ constraints.close();
+
+ deallog << "Testing " << dof.get_fe().get_name() << std::endl;
+ //std::cout << "Number of cells: " << tria.n_global_active_cells() << std::endl;
+ //std::cout << "Number of degrees of freedom: " << dof.n_dofs() << std::endl;
+ //std::cout << "Number of constraints: " << constraints.n_constraints() << std::endl;
+
+ MatrixFree<dim,number> mf_data;
+ {
+ const QGauss<1> quad (fe_degree+1);
+ typename MatrixFree<dim,number>::AdditionalData data;
+ data.mpi_communicator = MPI_COMM_WORLD;
+ data.tasks_parallel_scheme =
+ MatrixFree<dim,number>::AdditionalData::none;
+ data.tasks_block_size = 7;
+ mf_data.reinit (dof, constraints, quad, data);
+ }
+
+ MatrixFreeOperators::LaplaceOperator<dim,fe_degree,fe_degree+1, 1, number> mf;
+ mf.initialize(mf_data);
+ mf.compute_diagonal();
+ LinearAlgebra::distributed::Vector<number> in, out, ref;
+ mf_data.initialize_dof_vector (in);
+ out.reinit (in);
+ ref.reinit (in);
+
+ for (unsigned int i=0; i<in.local_size(); ++i)
+ {
+ const unsigned int glob_index =
+ owned_set.nth_index_in_set (i);
+ if (constraints.is_constrained(glob_index))
+ continue;
+ in.local_element(i) = (double)Testing::rand()/RAND_MAX;
+ }
+
+ mf.vmult (out, in);
+
+
+ // assemble trilinos sparse matrix with
+ // (v, u) for reference
+ TrilinosWrappers::SparseMatrix sparse_matrix;
+ {
+ TrilinosWrappers::SparsityPattern csp (owned_set, MPI_COMM_WORLD);
+ DoFTools::make_sparsity_pattern (dof, csp, constraints, true,
+ Utilities::MPI::this_mpi_process(MPI_COMM_WORLD));
+ csp.compress();
+ sparse_matrix.reinit (csp);
+ }
+ {
+ QGauss<dim> quadrature_formula(fe_degree+1);
+
+ FEValues<dim> fe_values (dof.get_fe(), quadrature_formula,
+ update_gradients | update_JxW_values);
+
+ const unsigned int dofs_per_cell = dof.get_fe().dofs_per_cell;
+ const unsigned int n_q_points = quadrature_formula.size();
+
+ FullMatrix<double> cell_matrix (dofs_per_cell, dofs_per_cell);
+ std::vector<types::global_dof_index> local_dof_indices (dofs_per_cell);
+
+ typename DoFHandler<dim>::active_cell_iterator
+ cell = dof.begin_active(),
+ endc = dof.end();
+ for (; cell!=endc; ++cell)
+ if (cell->is_locally_owned())
+ {
+ cell_matrix = 0;
+ fe_values.reinit (cell);
+
+ for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
+ for (unsigned int i=0; i<dofs_per_cell; ++i)
+ {
+ for (unsigned int j=0; j<dofs_per_cell; ++j)
+ cell_matrix(i,j) += (fe_values.shape_grad(i,q_point) *
+ fe_values.shape_grad(j,q_point)) *
+ fe_values.JxW(q_point);
+ }
+
+ cell->get_dof_indices(local_dof_indices);
+ constraints.distribute_local_to_global (cell_matrix,
+ local_dof_indices,
+ sparse_matrix);
+ }
+ }
+ sparse_matrix.compress(VectorOperation::add);
+
+ sparse_matrix.vmult (ref, in);
+ out -= ref;
+ const double diff_norm = out.linfty_norm();
+
+ deallog << "Norm of difference: " << diff_norm << std::endl << std::endl;
+}
+
+
+int main (int argc, char **argv)
+{
+ Utilities::MPI::MPI_InitFinalize mpi_initialization (argc, argv, testing_max_num_threads());
+
+ unsigned int myid = Utilities::MPI::this_mpi_process (MPI_COMM_WORLD);
+ deallog.push(Utilities::int_to_string(myid));
+
+ if (myid == 0)
+ {
+ std::ofstream logfile("output");
+ deallog.attach(logfile);
+ deallog << std::setprecision(4);
+ deallog.threshold_double(1.e-10);
+
+ deallog.push("2d");
+ test<2,1>();
+ test<2,2>();
+ deallog.pop();
+
+ deallog.push("3d");
+ test<3,1>();
+ test<3,2>();
+ deallog.pop();
+ }
+ else
+ {
+ test<2,1>();
+ test<2,2>();
+ test<3,1>();
+ test<3,2>();
+ }
+}
+
--- /dev/null
+
+DEAL:0:2d::Testing FE_Q<2>(1)
+DEAL:0:2d::Norm of difference: 0
+DEAL:0:2d::
+DEAL:0:2d::Testing FE_Q<2>(2)
+DEAL:0:2d::Norm of difference: 0
+DEAL:0:2d::
+DEAL:0:3d::Testing FE_Q<3>(1)
+DEAL:0:3d::Norm of difference: 0
+DEAL:0:3d::
+DEAL:0:3d::Testing FE_Q<3>(2)
+DEAL:0:3d::Norm of difference: 0
+DEAL:0:3d::
--- /dev/null
+
+DEAL:0:2d::Testing FE_Q<2>(1)
+DEAL:0:2d::Norm of difference: 0
+DEAL:0:2d::
+DEAL:0:2d::Testing FE_Q<2>(2)
+DEAL:0:2d::Norm of difference: 0
+DEAL:0:2d::
+DEAL:0:3d::Testing FE_Q<3>(1)
+DEAL:0:3d::Norm of difference: 0
+DEAL:0:3d::
+DEAL:0:3d::Testing FE_Q<3>(2)
+DEAL:0:3d::Norm of difference: 0
+DEAL:0:3d::
--- /dev/null
+// ---------------------------------------------------------------------
+//
+// Copyright (C) 2016 by the deal.II authors
+//
+// This file is part of the deal.II library.
+//
+// The deal.II library is free software; you can use it, redistribute
+// it, and/or modify it under the terms of the GNU Lesser General
+// Public License as published by the Free Software Foundation; either
+// version 2.1 of the License, or (at your option) any later version.
+// The full text of the license can be found in the file LICENSE at
+// the top level of the deal.II distribution.
+//
+// ---------------------------------------------------------------------
+
+
+
+// the same as laplace_operator_01, but tests heterogeneous Laplace operator.
+
+#include "../tests.h"
+
+#include <deal.II/base/logstream.h>
+#include <deal.II/base/utilities.h>
+#include <deal.II/base/function.h>
+#include <deal.II/distributed/tria.h>
+#include <deal.II/grid/grid_generator.h>
+#include <deal.II/grid/tria_boundary_lib.h>
+#include <deal.II/dofs/dof_tools.h>
+#include <deal.II/dofs/dof_handler.h>
+#include <deal.II/lac/constraint_matrix.h>
+#include <deal.II/lac/trilinos_sparse_matrix.h>
+#include <deal.II/lac/trilinos_sparsity_pattern.h>
+#include <deal.II/matrix_free/operators.h>
+#include <deal.II/fe/fe_q.h>
+#include <deal.II/fe/fe_values.h>
+#include <deal.II/numerics/vector_tools.h>
+
+#include <iostream>
+
+
+template <int dim>
+class F : public Function<dim>
+{
+public:
+ F (const unsigned int q,
+ const unsigned int n_components)
+ :
+ Function<dim>(n_components),
+ q(q)
+ {}
+
+ virtual double value (const Point<dim> &p,
+ const unsigned int component = 0) const
+ {
+ Assert ((component == 0) && (this->n_components == 1),
+ ExcInternalError());
+ double val = 0;
+ for (unsigned int d=0; d<dim; ++d)
+ for (unsigned int i=0; i<=q; ++i)
+ val += (d+1)*(i+1)*std::pow (p[d], 1.*i);
+ return val;
+ }
+
+ VectorizedArray<double> value(const Point<dim, VectorizedArray<double> > &p_vec) const
+ {
+ VectorizedArray<double> res = make_vectorized_array (0.);
+ Point<dim> p;
+ for (unsigned int v = 0; v < VectorizedArray<double>::n_array_elements; ++v)
+ {
+ for (unsigned int d = 0; d < dim; d++)
+ p[d] = p_vec[d][v];
+ res[v] = value(p);
+ }
+ return res;
+ }
+
+
+private:
+ const unsigned int q;
+};
+
+
+
+
+
+template <int dim, int fe_degree>
+void test ()
+{
+ typedef double number;
+ F<dim> function(3,1);
+
+ parallel::distributed::Triangulation<dim> tria (MPI_COMM_WORLD);
+ GridGenerator::hyper_cube (tria);
+ tria.refine_global(1);
+ typename Triangulation<dim>::active_cell_iterator
+ cell = tria.begin_active (),
+ endc = tria.end();
+ cell = tria.begin_active ();
+ for (; cell!=endc; ++cell)
+ if (cell->is_locally_owned())
+ if (cell->center().norm()<0.2)
+ cell->set_refine_flag();
+ tria.execute_coarsening_and_refinement();
+ if (dim < 3 && fe_degree < 2)
+ tria.refine_global(2);
+ else
+ tria.refine_global(1);
+ if (tria.begin(tria.n_levels()-1)->is_locally_owned())
+ tria.begin(tria.n_levels()-1)->set_refine_flag();
+ if (tria.last()->is_locally_owned())
+ tria.last()->set_refine_flag();
+ tria.execute_coarsening_and_refinement();
+ cell = tria.begin_active ();
+ for (unsigned int i=0; i<10-3*dim; ++i)
+ {
+ cell = tria.begin_active ();
+ unsigned int counter = 0;
+ for (; cell!=endc; ++cell, ++counter)
+ if (cell->is_locally_owned())
+ if (counter % (7-i) == 0)
+ cell->set_refine_flag();
+ tria.execute_coarsening_and_refinement();
+ }
+
+ FE_Q<dim> fe (fe_degree);
+ DoFHandler<dim> dof (tria);
+ dof.distribute_dofs(fe);
+
+ IndexSet owned_set = dof.locally_owned_dofs();
+ IndexSet relevant_set;
+ DoFTools::extract_locally_relevant_dofs (dof, relevant_set);
+
+ ConstraintMatrix constraints (relevant_set);
+ DoFTools::make_hanging_node_constraints(dof, constraints);
+ VectorTools::interpolate_boundary_values (dof, 0, ZeroFunction<dim>(),
+ constraints);
+ constraints.close();
+
+ deallog << "Testing " << dof.get_fe().get_name() << std::endl;
+ //std::cout << "Number of cells: " << tria.n_global_active_cells() << std::endl;
+ //std::cout << "Number of degrees of freedom: " << dof.n_dofs() << std::endl;
+ //std::cout << "Number of constraints: " << constraints.n_constraints() << std::endl;
+
+ MatrixFree<dim,number> mf_data;
+ {
+ const QGauss<1> quad (fe_degree+1);
+ typename MatrixFree<dim,number>::AdditionalData data;
+ data.mpi_communicator = MPI_COMM_WORLD;
+ data.tasks_parallel_scheme =
+ MatrixFree<dim,number>::AdditionalData::none;
+ data.tasks_block_size = 7;
+ data.mapping_update_flags = update_quadrature_points | update_gradients | update_JxW_values;
+ mf_data.reinit (dof, constraints, quad, data);
+ }
+
+ std_cxx11::shared_ptr<Table<2, VectorizedArray<number> > > coefficient;
+ coefficient = std_cxx11::make_shared<Table<2, VectorizedArray<number> > >();
+ {
+ FEEvaluation<dim,fe_degree,fe_degree+1,1,number> fe_eval(mf_data);
+
+ const unsigned int n_cells = mf_data.n_macro_cells();
+ const unsigned int n_q_points = fe_eval.n_q_points;
+
+ coefficient->reinit(n_cells, n_q_points);
+ for (unsigned int cell=0; cell<n_cells; ++cell)
+ {
+ fe_eval.reinit(cell);
+ for (unsigned int q=0; q<n_q_points; ++q)
+ (*coefficient)(cell,q) = function.value(fe_eval.quadrature_point(q));
+ }
+ }
+
+ MatrixFreeOperators::LaplaceOperator<dim,fe_degree,fe_degree+1, 1, number> mf;
+ mf.initialize(mf_data);
+ mf.set_coefficient(coefficient);
+ mf.compute_diagonal();
+ LinearAlgebra::distributed::Vector<number> in, out, ref;
+ mf_data.initialize_dof_vector (in);
+ out.reinit (in);
+ ref.reinit (in);
+
+ for (unsigned int i=0; i<in.local_size(); ++i)
+ {
+ const unsigned int glob_index =
+ owned_set.nth_index_in_set (i);
+ if (constraints.is_constrained(glob_index))
+ continue;
+ in.local_element(i) = (double)Testing::rand()/RAND_MAX;
+ }
+
+ mf.vmult (out, in);
+
+
+ // assemble trilinos sparse matrix with
+ // (v, u) for reference
+ TrilinosWrappers::SparseMatrix sparse_matrix;
+ {
+ TrilinosWrappers::SparsityPattern csp (owned_set, MPI_COMM_WORLD);
+ DoFTools::make_sparsity_pattern (dof, csp, constraints, true,
+ Utilities::MPI::this_mpi_process(MPI_COMM_WORLD));
+ csp.compress();
+ sparse_matrix.reinit (csp);
+ }
+ {
+ QGauss<dim> quadrature_formula(fe_degree+1);
+
+ FEValues<dim> fe_values (dof.get_fe(), quadrature_formula,
+ update_gradients | update_JxW_values | update_quadrature_points);
+
+ const unsigned int dofs_per_cell = dof.get_fe().dofs_per_cell;
+ const unsigned int n_q_points = quadrature_formula.size();
+
+ FullMatrix<double> cell_matrix (dofs_per_cell, dofs_per_cell);
+ std::vector<types::global_dof_index> local_dof_indices (dofs_per_cell);
+
+ typename DoFHandler<dim>::active_cell_iterator
+ cell = dof.begin_active(),
+ endc = dof.end();
+ for (; cell!=endc; ++cell)
+ if (cell->is_locally_owned())
+ {
+ cell_matrix = 0;
+ fe_values.reinit (cell);
+
+ for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
+ for (unsigned int i=0; i<dofs_per_cell; ++i)
+ {
+ for (unsigned int j=0; j<dofs_per_cell; ++j)
+ cell_matrix(i,j) += (fe_values.shape_grad(i,q_point) *
+ fe_values.shape_grad(j,q_point)) *
+ function.value(fe_values.quadrature_point(q_point)) *
+ fe_values.JxW(q_point);
+ }
+
+ cell->get_dof_indices(local_dof_indices);
+ constraints.distribute_local_to_global (cell_matrix,
+ local_dof_indices,
+ sparse_matrix);
+ }
+ }
+ sparse_matrix.compress(VectorOperation::add);
+
+ sparse_matrix.vmult (ref, in);
+ out -= ref;
+ const double diff_norm = out.linfty_norm();
+
+ deallog << "Norm of difference: " << diff_norm << std::endl << std::endl;
+}
+
+
+int main (int argc, char **argv)
+{
+ Utilities::MPI::MPI_InitFinalize mpi_initialization (argc, argv, testing_max_num_threads());
+
+ unsigned int myid = Utilities::MPI::this_mpi_process (MPI_COMM_WORLD);
+ deallog.push(Utilities::int_to_string(myid));
+
+ if (myid == 0)
+ {
+ std::ofstream logfile("output");
+ deallog.attach(logfile);
+ deallog << std::setprecision(4);
+ deallog.threshold_double(1.e-10);
+
+ deallog.push("2d");
+ test<2,1>();
+ test<2,2>();
+ deallog.pop();
+
+ deallog.push("3d");
+ test<3,1>();
+ test<3,2>();
+ deallog.pop();
+ }
+ else
+ {
+ test<2,1>();
+ test<2,2>();
+ test<3,1>();
+ test<3,2>();
+ }
+}
+
--- /dev/null
+
+DEAL:0:2d::Testing FE_Q<2>(1)
+DEAL:0:2d::Norm of difference: 0
+DEAL:0:2d::
+DEAL:0:2d::Testing FE_Q<2>(2)
+DEAL:0:2d::Norm of difference: 0
+DEAL:0:2d::
+DEAL:0:3d::Testing FE_Q<3>(1)
+DEAL:0:3d::Norm of difference: 0
+DEAL:0:3d::
+DEAL:0:3d::Testing FE_Q<3>(2)
+DEAL:0:3d::Norm of difference: 0
+DEAL:0:3d::
--- /dev/null
+
+DEAL:0:2d::Testing FE_Q<2>(1)
+DEAL:0:2d::Norm of difference: 0
+DEAL:0:2d::
+DEAL:0:2d::Testing FE_Q<2>(2)
+DEAL:0:2d::Norm of difference: 0
+DEAL:0:2d::
+DEAL:0:3d::Testing FE_Q<3>(1)
+DEAL:0:3d::Norm of difference: 0
+DEAL:0:3d::
+DEAL:0:3d::Testing FE_Q<3>(2)
+DEAL:0:3d::Norm of difference: 0
+DEAL:0:3d::