<td> Anisotropic refinement for DG finite element methods.
</td></tr>
+ <tr><td><a href="../../doxygen/deal.II/step_31.html">Step-31</a></td>
+ <td> Time-dependent Stokes flow driven by temperature
+ differences in a fluid. Adaptive meshes that change between time
+ steps.
+ </td></tr>
+
<tr valign="top">
<td><a href="../../doxygen/deal.II/step_33.html">Step-33</a></td>
<td> A nonlinear hyperbolic conservation law: The Euler equations of
<td></td>
<td><a href="../../doxygen/deal.II/step_20.html">Step-20</a>,
<a href="../../doxygen/deal.II/step_21.html">Step-21</a>,
- <a href="../../doxygen/deal.II/step_22.html">Step-22</a></td>
+ <a href="../../doxygen/deal.II/step_22.html">Step-22</a>,
+ <a href="../../doxygen/deal.II/step_31.html">Step-31</a></td>
<td> Block solvers and preconditioners
</td>
</tr>
</td>
</tr>
+ <tr valign="top">
+ <td></td>
+ <td><a href="../../doxygen/deal.II/step_31.html">Step-31</a>,
+ <a href="../../doxygen/deal.II/step_33.html">Step-33</a></td>
+ <td> Using Trilinos
+ </td>
+ </tr>
+
<tr valign="top">
<td></td>
<td><a href="../../doxygen/deal.II/step_19.html">Step-19</a>,
<td></td>
<td><a href="../../doxygen/deal.II/step_15.html">Step-15</a>,
<a href="../../doxygen/deal.II/step_28.html">Step-28</a>,
+ <a href="../../doxygen/deal.II/step_31.html">Step-31</a>,
<a href="../../doxygen/deal.II/step_33.html">Step-33</a></td>
<td> Transfering solutions across mesh refinement
</td>
<tr valign="top">
<td><b></b></td>
- <td><a href="../../doxygen/deal.II/step_16.html">Step-16</a></td>
+ <td><a href="../../doxygen/deal.II/step_16.html">Step-16</a>,
+ <a href="../../doxygen/deal.II/step_31.html">Step-31</a></td>
<td> Multilevel preconditioners
</td>
</tr>
<td><b></b></td>
<td><a href="../../doxygen/deal.II/step_20.html">Step-20</a>,
<a href="../../doxygen/deal.II/step_21.html">Step-21</a>,
- <a href="../../doxygen/deal.II/step_22.html">Step-22</a></td>
+ <a href="../../doxygen/deal.II/step_22.html">Step-22</a>,
+ <a href="../../doxygen/deal.II/step_31.html">Step-31</a></td>
<td> Block and Schur complement solvers
</td>
</tr>
<tr valign="top">
<td><b></b></td>
- <td><a href="../../doxygen/deal.II/step_3.html">Step-33</a></td>
+ <td><a href="../../doxygen/deal.II/step_33.html">Step-33</a></td>
<td> Linear Newton systems from nonlinear equations
</td>
</tr>
<tr valign="top">
<td></td>
- <td><a href="../../doxygen/deal.II/step_9.html">Step-9</a></td>
+ <td><a href="../../doxygen/deal.II/step_9.html">Step-9</a>,
+ <a href="../../doxygen/deal.II/step_21.html">Step-21</a>,
+ <a href="../../doxygen/deal.II/step_31.html">Step-31</a></td>
<td> Transport (advection) equations
</td>
</tr>
<tr valign="top">
<td></td>
- <td><a href="../../doxygen/deal.II/step_22.html">Step-22</a></td>
+ <td><a href="../../doxygen/deal.II/step_22.html">Step-22</a>,
+ <a href="../../doxygen/deal.II/step_31.html">Step-31</a></td>
<td> Incompressible Stokes flow
</td>
</tr>
<tr valign="top">
<td></td>
- <td><a href="../../doxygen/deal.II/step_22.html">Step-22</a></td>
+ <td><a href="../../doxygen/deal.II/step_22.html">Step-22</a>,
+ <a href="../../doxygen/deal.II/step_31.html">Step-31</a></td>
<td> Incompressible Stokes flow
</td>
</tr>
</td>
</tr>
+ <tr valign="top">
+ <td></td>
+ <td><a href="../../doxygen/deal.II/step_31.html">Step-31</a></td>
+ <td> Time dependent Stokes flow driven by buoyancy
+ </td>
+ </tr>
+
<tr valign="top">
<td></td>
<td><a href="../../doxygen/deal.II/step_33.html">Step-33</a></td>
<h3>General</h3>
<ol>
+ <li>
+ <p>
+ New: A new tutorial program, @ref step_31 "step-31", is contributed by
+ Martin Kronbichler and Wolfgang Bangerth and shows the
+ solution of the Boussinesq approximation to thermally driven
+ convection in an incompressible fluid.
+ <br>
+ (Martin Kronbichler 2008/11/14)
+ </p>
+ </li>
+
<li>
<p>
Updated: In the @ref step_22 "step-22" tutorial program the generation of
been replaced by a pattern of the class BlockCompressedSimpleSparsityPattern,
which uses far less memory and is slightly faster.
<br>
- (Martin Kronbichler 2008/11/12)
+ (Martin Kronbichler, WB 2008/11/12)
</p>
</li>
-
+
<li>
<p>
New: The shared libraries we create are now versioned, i.e. they have
</p>
</li>
+ <li>
+ <p>
+ New: A new tutorial program, @ref step_28 "step-28", is contributed by
+ Yaqi Wang. It illustrates the solution
+ of a coupled system of diffusion equations relevant to
+ nuclear reactor physics where we use different meshes for
+ different components of a vector-valued solution.
+ <br>
+ (Yaqi Wang 2008/09/10)
+ </p>
+ </li>
+
<li>
<p>
Fixed: In the new @ref step_33 "step-33" tutorial program there was