]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Implement the el(i,j) function.
authorwolf <wolf@0785d39b-7218-0410-832d-ea1e28bc413d>
Fri, 2 Jun 2000 13:52:45 +0000 (13:52 +0000)
committerwolf <wolf@0785d39b-7218-0410-832d-ea1e28bc413d>
Fri, 2 Jun 2000 13:52:45 +0000 (13:52 +0000)
git-svn-id: https://svn.dealii.org/trunk@2989 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/lac/include/lac/sparse_matrix.h

index 2d9d7d0eb442c89734c46b313d1b1148cf8174d7..4f8904cede615621132cbf0ddad32bad1bbac378 100644 (file)
@@ -278,28 +278,59 @@ class SparseMatrix : public Subscriptor
                     const SparseMatrix<somenumber> &matrix);
     
                                     /**
-                                     * Return the value of the entry (i,j).
-                                     * This may be an expensive operation
-                                     * and you should always take care
-                                     * where to call this function.
-                                     * In order to avoid abuse, this function
-                                     * throws an exception if the wanted
-                                     * element does not exist in the matrix.
-                                     */
-    number operator () (const unsigned int i, const unsigned int j) const;
+                                     * Return the value of the entry
+                                     * (i,j).  This may be an
+                                     * expensive operation and you
+                                     * should always take care where
+                                     * to call this function.  In
+                                     * order to avoid abuse, this
+                                     * function throws an exception
+                                     * if the required element does
+                                     * not exist in the matrix.
+                                     *
+                                     * In case you want a function
+                                     * that returns zero instead (for
+                                     * entries that are not in the
+                                     * sparsity pattern of the
+                                     * matrix), use the #el#
+                                     * function.
+                                     */
+    number operator () (const unsigned int i,
+                       const unsigned int j) const;
+
+                                    /**
+                                     * This function is mostly like
+                                     * #operator()# in that it
+                                     * returns the value of the
+                                     * matrix entry #(i,j)#. The only
+                                     * difference is that if this
+                                     * entry does not exist in the
+                                     * sparsity pattern, then instead
+                                     * of raising an exception, zero
+                                     * is returned. While this may be
+                                     * convenient in some cases, note
+                                     * that it is simple to write
+                                     * algorithms that are slow
+                                     * compared to an optimal
+                                     * solution, since the sparsity
+                                     * of the matrix is not used.
+                                     */
+    number el (const unsigned int i,
+              const unsigned int j) const;
 
                                     /**
                                      * Return the main diagonal element in
                                      * the #i#th row. This function throws an
                                      * error if the matrix is not square.
                                      *
-                                     * This function is considerably faster
-                                     * than the #operator()#, since for
-                                     * square matrices, the diagonal entry is
-                                     * always the first to be stored in each
-                                     * row and access therefore does not
-                                     * involve searching for the right column
-                                     * number.
+                                     * This function is considerably
+                                     * faster than the #operator()#,
+                                     * since for square matrices, the
+                                     * diagonal entry is always the
+                                     * first to be stored in each row
+                                     * and access therefore does not
+                                     * involve searching for the
+                                     * right column number.
                                      */
     number diag_element (const unsigned int i) const;
 
@@ -850,6 +881,23 @@ number SparseMatrix<number>::operator () (const unsigned int i,
 };
 
 
+
+template <typename number>
+inline
+number SparseMatrix<number>::el (const unsigned int i,
+                                const unsigned int j) const
+{
+  Assert (cols != 0, ExcMatrixNotInitialized());
+  const unsigned int index = cols->operator()(i,j);
+
+  if (index != SparsityPattern::invalid_entry)
+    return val[index];
+  else
+    return 0;
+};
+
+
+
 template <typename number>
 inline
 number SparseMatrix<number>::diag_element (const unsigned int i) const

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.