]> https://gitweb.dealii.org/ - dealii.git/commitdiff
.
authorRalf Hartmann <Ralf.Hartmann@dlr.de>
Fri, 18 Jan 2002 09:52:25 +0000 (09:52 +0000)
committerRalf Hartmann <Ralf.Hartmann@dlr.de>
Fri, 18 Jan 2002 09:52:25 +0000 (09:52 +0000)
git-svn-id: https://svn.dealii.org/trunk@5393 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/doc/publications/2001/hh-2.html [new file with mode: 0644]
deal.II/doc/publications/2001/hh_enumath.html [new file with mode: 0644]

diff --git a/deal.II/doc/publications/2001/hh-2.html b/deal.II/doc/publications/2001/hh-2.html
new file mode 100644 (file)
index 0000000..1733fd2
--- /dev/null
@@ -0,0 +1,45 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"
+   "http://www.w3.org/TR/REC-html40/strict.dtd">
+<html>
+  <head>
+    <link href="../../screen.css" rel="StyleSheet" title="deal.II Homepage" media="screen">
+    <link href="../../print.css" rel="StyleSheet" title="deal.II Homepage" media="print">
+    <title>The deal.II Homepage</title>
+    <meta name="author" content="Ralf Hartmann <Ralf Hartmann@iwr.uni-heidelberg.de>">
+    <meta name="keywords" content="Publications on and with deal.II"></head>
+  <body>
+
+
+<H3>Abstract:</H3>
+<DIR>
+In this paper a recently developed approach
+  for the design of
+  adaptive discontinuous Galerkin finite element approximations
+  is applied to physically relevant problems arising in inviscid compressible
+  fluid flows governed by the
+  Euler equations of gas dynamics.  In particular, we employ so--called
+  weighted or Type I <em>a posteriori</em> error bounds to drive adaptive
+  finite element algorithms for the estimation of
+  the error measured in terms of general linear and nonlinear target
+  functionals of the solution; typical examples considered here include
+  the point evaluation of a component of the solution vector, and the
+  drag and lift coefficients of a body immersed in an inviscid fluid.
+  This general approach leads to the design of
+  economical finite element meshes specifically tailored to the computation 
+  of the target functional of interest, as well as providing reliable and
+  efficient error estimation. Indeed, the superiority of the proposed
+  approach over standard mesh refinement algorithms which employ <em>
+    ad hoc</em> error indicators will be illustrated by a series of 
+  numerical experiments; here, we consider
+  transonic flow through a nozzle, as well as subsonic, transonic and
+  supersonic flows around different airfoil geometries.
+
+</DIR>
+<P>
+<BR><HR>
+<ADDRESS>
+<I>Ralf Hartmann</I>
+<BR><I>2001-12-18</I>
+</ADDRESS>
+</BODY>
+</HTML>
diff --git a/deal.II/doc/publications/2001/hh_enumath.html b/deal.II/doc/publications/2001/hh_enumath.html
new file mode 100644 (file)
index 0000000..3ec52ea
--- /dev/null
@@ -0,0 +1,31 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"
+   "http://www.w3.org/TR/REC-html40/strict.dtd">
+<html>
+  <head>
+    <link href="../../screen.css" rel="StyleSheet" title="deal.II Homepage" media="screen">
+    <link href="../../print.css" rel="StyleSheet" title="deal.II Homepage" media="print">
+    <title>The deal.II Homepage</title>
+    <meta name="author" content="Ralf Hartmann <Ralf Hartmann@iwr.uni-heidelberg.de>">
+    <meta name="keywords" content="Publications on and with deal.II"></head>
+  <body>
+
+
+<H3>Abstract:</H3>
+<DIR>
+We consider so-called `goal-oriented' <em>a posteriori</em> error
+estimation for discontinuous Galerkin finite element approximations to
+the compressible Euler equations of gas dynamics.  By employing a
+hyperbolic duality argument, we derive weighted, or Type I, <em>a
+posteriori</em> error estimates which bound the error measured in
+terms of certain target functionals of real or physical interest.  The
+practical advantages of this general approach are illustrated by a
+series of numerical experiments.
+</DIR>
+<P>
+<BR><HR>
+<ADDRESS>
+<I>Ralf Hartmann</I>
+<BR><I>2000-12-03</I>
+</ADDRESS>
+</BODY>
+</HTML>

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.