* @p{precondition_Jacobi(VECTOR&, const VECTOR&, double}
*
* @sect2{Usage example}
- * <pre>
+ * @begin{itemize}
* // Declare related objects
*
* SparseMatrix<double> A;
* precondition.initialize (A, .6);
*
* solver.solve (A, x, b, precondition);
- * </pre>
+ * @end{itemize}
*
* @author Guido Kanschat, 2000
*/
*
*
* @sect2{Usage example}
- * <pre>
+ * @begin{itemize}
* // Declare related objects
*
* SparseMatrix<double> A;
* precondition.initialize (A, .6);
*
* solver.solve (A, x, b, precondition);
- * </pre>
+ * @end{itemize}
*
* @author Guido Kanschat, 2000
*/
*
*
* @sect2{Usage example}
- * <pre>
+ * @begin{itemize}
* // Declare related objects
*
* SparseMatrix<double> A;
* precondition.initialize (A, .6);
*
* solver.solve (A, x, b, precondition);
- * </pre>
+ * @end{itemize}
*
* @author Guido Kanschat, 2000
*/
* errors. The inner loop is an appropriate Krylov space method, since
* it is fast.
*
- * <pre>
+ * @begin{itemize}
* // Declare related objects
*
* SparseMatrix<double> A;
* SolverRichardson<Vector<double> > outer_iteration;
*
* outer_iteration.solve (A, x, b, precondition);
- * </pre>
+ * @end{itemize}
*
* Each time we call the inner loop, reduction of the residual by a
* factor @p{1.e-2} is attempted. Since the right hand side vector of
template<class MATRIX, class VECTOR>
PreconditionUseMatrix<MATRIX,VECTOR>::PreconditionUseMatrix(const MATRIX& M,
- function_ptr method)
+ function_ptr method)
:
matrix(M), precondition(method)
{}