* A variable of this type has to be passed to the constructor of the
* @p{FEValues} object. You can select more than one flag by concatenation
* using the @p{|} (bitwise @p{or}) operator.
+ *
+ *
+ * @sect2{Description of Flags}
+ *
+ * The following flags are declared:
+ * @begin{itemize}
+ * @item @p{update_default = 0}: Default: update nothing.
+ * @item @p{update_values = 1}: Compute the values of the shape
+ * functions at the quadrature points on the real space cell. For the
+ * usual Lagrange elements, these values are equal to the values of
+ * the shape functions at the quadrature points on the unit cell, but
+ * they are different for more complicated elements, such as BDM or
+ * Raviart-Thomas elements.
+ * @item @p{update_q_points = 2}: Compute quadrature points in real
+ * space (not on unit cell).
+ * @item @p{update_gradients = 4}: Transform gradients on unit cell to
+ * gradients on real cell.
+ * @item @p{update_jacobians = 8}: Compute jacobian matrices of the
+ * transform between unit and real cell
+ * in the evaluation points.
+ * @item @p{update_JxW_values = 16}: Compute the JxW values (Jacobian
+ * determinant at the quadrature point
+ * times the weight of this point).
+ * @item @p{update_support_points = 32}: Compute the points on the real cell
+ * on which the trial functions are located.
+ * Giving this flag to the
+ * @p{FESubfaceValues} class will result
+ * in an error, since support points are
+ * not useful in that case.
+ * @item @p{update_normal_vectors = 64}: Update the outward normal vectors
+ * to the face relative to this cell.
+ * This flag is only evaluated by
+ * the @p{FEFaceValues} class.
+ * Giving this flag to the
+ * @p{FEValues} class will result in
+ * an error, since normal vectors are
+ * not useful in that case.
+ * @item @p{update_second_derivatives = 128}: Update the second derivatives of the
+ * shape functions on the real cell.
+ * @end{itemize}
+ *
+ * @author Wolfgang Bangerth, 1998, 1999
*/
-enum UpdateFlags {
- /**
- * Default: update nothing.
- */
- update_default = 0,
- /**
- * Compute the values of the
- * shape functions at the
- * quadrature points on the
- * real space cell. For the
- * usual Lagrange elements,
- * these values are equal to
- * the values of the shape
- * functions at the quadrature
- * points on the unit cell, but
- * they are different for more
- * complicated elements, such
- * as BDM or Raviart-Thomas
- * elements.
- */
- update_values = 1,
- /**
- * Compute quadrature points in real
- * space (not on unit cell).
- */
- update_q_points = 2,
- /**
- * Transform gradients on unit cell to
- * gradients on real cell.
- */
- update_gradients = 4,
- /**
- * Compute jacobian matrices of the
- * transform between unit and real cell
- * in the evaluation points.
- */
- update_jacobians = 8,
- /**
- * Compute the JxW values (Jacobian
- * determinant at the quadrature point
- * times the weight of this point).
- */
- update_JxW_values = 16,
- /**
- * Compute the points on the real cell
- * on which the trial functions are
- * located.
- *
- * Giving this flag to the
- * @p{FESubfaceValues} class will result
- * in an error, since support points are
- * not useful in that case.
- */
- update_support_points = 32,
- /**
- * Update the outward normal vectors
- * to the face relative to this cell.
- * This flag is only evaluated by
- * the @p{FEFaceValues} class.
- *
- * Giving this flag to the
- * @p{FEValues} class will result in
- * an error, since normal vectors are
- * not useful in that case.
- */
- update_normal_vectors = 64,
-
- /**
- * Update the second derivatives of the
- * shape functions on the real cell.
- */
+enum UpdateFlags
+{
+ update_default = 0,
+ update_values = 1,
+ update_q_points = 2,
+ update_gradients = 4,
+ update_jacobians = 8,
+ update_JxW_values = 16,
+ update_support_points = 32,
+ update_normal_vectors = 64,
update_second_derivatives = 128
};