<TABLE WIDTH="60%" ALIGN="center">
<tr>
<td ALIGN="center">
- @image html step-31.2d.mesh-0.png
+ @image html step-22.2d.mesh-0.png
</td>
<td ALIGN="center">
- @image html step-31.2d.mesh-1.png
+ @image html step-22.2d.mesh-1.png
</td>
</tr>
<tr>
<td ALIGN="center">
- @image html step-31.2d.mesh-2.png
+ @image html step-22.2d.mesh-2.png
</td>
<td ALIGN="center">
- @image html step-31.2d.mesh-3.png
+ @image html step-22.2d.mesh-3.png
</td>
</tr>
<tr>
<td ALIGN="center">
- @image html step-31.2d.mesh-4.png
+ @image html step-22.2d.mesh-4.png
</td>
<td ALIGN="center">
- @image html step-31.2d.mesh-5.png
+ @image html step-22.2d.mesh-5.png
</td>
</tr>
</table>
transported along with the moving upper boundary and being replaced by
material coming from below:
-@image html step-31.2d.solution.png
+@image html step-22.2d.solution.png
This plot uses the capability of VTK-based visualization programs (in
this case of VisIt) to show vector data; this is the result of us
<TABLE WIDTH="60%" ALIGN="center">
<tr>
<td ALIGN="center">
- @image html step-31.3d.mesh-0.png
+ @image html step-22.3d.mesh-0.png
</td>
<td ALIGN="center">
- @image html step-31.3d.mesh-1.png
+ @image html step-22.3d.mesh-1.png
</td>
</tr>
<tr>
<td ALIGN="center">
- @image html step-31.3d.mesh-2.png
+ @image html step-22.3d.mesh-2.png
</td>
<td ALIGN="center">
- @image html step-31.3d.mesh-3.png
+ @image html step-22.3d.mesh-3.png
</td>
</tr>
<tr>
<td ALIGN="center">
- @image html step-31.3d.mesh-4.png
+ @image html step-22.3d.mesh-4.png
</td>
<td ALIGN="center">
- @image html step-31.3d.mesh-5.png
+ @image html step-22.3d.mesh-5.png
</td>
</tr>
<tr>
<td ALIGN="center">
- @image html step-31.3d.mesh-6.png
+ @image html step-22.3d.mesh-6.png
</td>
<td ALIGN="center">
by boundary conditions. The vector field computed makes for an
interesting graph:
-@image html step-31.3d.solution.png
+@image html step-22.3d.solution.png
The isocountours shown here as well are those of the pressure
variable, showing the singularity at the point of discontinuous
vector, then we get the following image after the first adaptive
refinement in two dimensions:
-@image html step-31.2d.sparsity-nor.png
+@image html step-22.2d.sparsity-nor.png
In order to generate such a graph, you have to insert a piece of
code like the following to the end of the setup step.
components. The renumbering with DoFRenumbering::Cuthill_McKee and grouping
the components into velocity and pressure yields the following output:
-@image html step-31.2d.sparsity-ren.png
+@image html step-22.2d.sparsity-ren.png
It is apparent that the situation has improved a lot. Most of the elements are
now concentrated around the diagonal in the (0,0) block in the matrix. Similar
is not a good choice in 3D - a full decomposition needs many new entries that
eventually won't fit into the physical memory (RAM):
-@image html step-31.3d.sparsity_uu-ren.png
+@image html step-22.3d.sparsity_uu-ren.png
<h2>Possible Extensions</h2>