]> https://gitweb.dealii.org/ - dealii.git/commitdiff
separate normal and tangential components for vector elements
authorGuido Kanschat <dr.guido.kanschat@gmail.com>
Wed, 20 Oct 2010 22:20:05 +0000 (22:20 +0000)
committerGuido Kanschat <dr.guido.kanschat@gmail.com>
Wed, 20 Oct 2010 22:20:05 +0000 (22:20 +0000)
git-svn-id: https://svn.dealii.org/trunk@22402 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/deal.II/source/fe/fe_tools.cc

index fb7242f7fb5ce242960698274c4eaef0421d04fe..25fbdcb63e6ee0d225d799d8bfcd1577dbab8cfc 100644 (file)
@@ -763,9 +763,7 @@ namespace FETools
   }
 
 
-// This function is tested by tests/fe/internals, since it produces the matrices printed there
-
-//TODO:[GK] Is this correct for vector valued?
+// This function is tested by tests/fe/internals, since it produces the matrices printed there  
   template <int dim, typename number, int spacedim>
   void
   compute_face_embedding_matrices(const FiniteElement<dim,spacedim>& fe,
@@ -773,29 +771,23 @@ namespace FETools
                                  const unsigned int face_coarse,
                                  const unsigned int face_fine)
   {
+    Assert(face_coarse==0, ExcNotImplemented());
+    Assert(face_fine==0, ExcNotImplemented());
+    
     const unsigned int nc = GeometryInfo<dim>::max_children_per_face;
     const unsigned int n  = fe.dofs_per_face;
     const unsigned int nd = fe.n_components();
     const unsigned int degree = fe.degree;
-
+    
+    const bool normal = fe.conforms(FiniteElementData<dim>::Hdiv);
+    const bool tangential = fe.conforms(FiniteElementData<dim>::Hcurl);
+    
     for (unsigned int i=0;i<nc;++i)
       {
        Assert(matrices[i].n() == n, ExcDimensionMismatch(matrices[i].n(),n));
        Assert(matrices[i].m() == n, ExcDimensionMismatch(matrices[i].m(),n));
       }
-
-                                    // Set up meshes, one with a single
-                                    // reference cell and refine it once
-    Triangulation<dim,spacedim> tria;
-    GridGenerator::hyper_cube (tria, 0, 1);
-    tria.refine_global(1);
-
-    MappingCartesian<dim> mapping;
-    QGauss<dim-1> q_gauss(degree+1);
-    const Quadrature<dim> q_fine = QProjector<dim>::project_to_face(q_gauss, face_fine);
-
-    const unsigned int nq = q_fine.size();
-
+    
                                     // In order to make the loops below
                                     // simpler, we introduce vectors
                                     // containing for indices 0-n the
@@ -849,6 +841,25 @@ namespace FETools
       }
     Assert (k == fe.dofs_per_face, ExcInternalError());
 
+                                    // Set up meshes, one with a single
+                                    // reference cell and refine it once
+    Triangulation<dim,spacedim> tria;
+    GridGenerator::hyper_cube (tria, 0, 1);
+    tria.refine_global(1);
+    MappingCartesian<dim> mapping;
+
+                                    // Setup quadrature and FEValues
+                                    // for a face. We cannot use
+                                    // FEFaceValues and
+                                    // FESubfaceValues because of
+                                    // some nifty handling of
+                                    // refinement cases. Guido stops
+                                    // disliking and instead starts
+                                    // hating the anisotropic implementation
+    QGauss<dim-1> q_gauss(degree+1);
+    const Quadrature<dim> q_fine = QProjector<dim>::project_to_face(q_gauss, face_fine);
+    const unsigned int nq = q_fine.size();
+
     FEValues<dim> fine (mapping, fe, q_fine,
                        update_quadrature_points | update_JxW_values | update_values);
 
@@ -868,12 +879,21 @@ namespace FETools
     fine.reinit(tria.begin_active());
     FullMatrix<number> A(nq*nd, n);
     for (unsigned int j=0;j<n;++j)
-      for (unsigned int d=0;d<nd;++d)
-       for (unsigned int k=0;k<nq;++k)
-         A(k*nd+d,j) = fine.shape_value_component(face_f_dofs[j],k,d);
-
+      for (unsigned int k=0;k<nq;++k)
+       if (nd != dim)
+         for (unsigned int d=0;d<nd;++d)
+           A(k*nd+d,j) = fine.shape_value_component(face_f_dofs[j],k,d);
+       else
+         {
+           if (normal)
+             A(k*nd,j) = fine.shape_value_component(face_f_dofs[j],k,0);
+           if (tangential)
+             for (unsigned int d=1;d<dim;++d)
+               A(k*nd+d,j) = fine.shape_value_component(face_f_dofs[j],k,d);
+         }
+    
     Householder<double> H(A);
-
+    
     Vector<number> v_coarse(nq*nd);
     Vector<number> v_fine(n);
 
@@ -904,10 +924,18 @@ namespace FETools
                                             // function values of the
                                             // coarse grid function in
                                             // each quadrature point.
-           for (unsigned int d=0;d<nd;++d)
-             for (unsigned int k=0;k<nq;++k)
-               v_coarse(k*nd+d) = coarse.shape_value_component (face_c_dofs[i],k,d);
-
+           for (unsigned int k=0;k<nq;++k)
+             if (nd != dim)
+               for (unsigned int d=0;d<nd;++d)
+                 v_coarse(k*nd+d) = coarse.shape_value_component (face_c_dofs[i],k,d);
+             else
+         {
+           if (normal)
+             v_coarse(k*nd) = coarse.shape_value_component(face_c_dofs[i],k,0);
+           if (tangential)
+             for (unsigned int d=1;d<dim;++d)
+               v_coarse(k*nd+d) = coarse.shape_value_component(face_c_dofs[i],k,d);
+         }
                                             // solve the least squares
                                             // problem.
            const double result = H.least_squares(v_fine, v_coarse);

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.