\\
&=&
(\textbf{n} \otimes \textbf{v},
- p \textbf{1} - 2\; \varepsilon(\textbf{u}))_{\Gamma_N}.
+ p \textbf{I} - 2\; \varepsilon(\textbf{u}))_{\Gamma_N}.
\\
&=&
(\textbf{v},
- \textbf{n}\cdot [p \textbf{1} - 2\; \varepsilon(\textbf{u})])_{\Gamma_N}.
+ \textbf{n}\cdot [p \textbf{I} - 2\; \varepsilon(\textbf{u})])_{\Gamma_N}.
@f}
In other words, on the Neumann part of the boundary we can
prescribe values for the total stress:
@f{eqnarray*}
- \textbf{n}\cdot [p \textbf{1} - 2\; \varepsilon(\textbf{u})]
+ \textbf{n}\cdot [p \textbf{I} - 2\; \varepsilon(\textbf{u})]
=
\textbf g_N \qquad\qquad \textrm{on}\ \Gamma_N.
@f}
<li>Robin-type boundary conditions: Robin boundary conditions are a mixture of
Dirichlet and Neumann boundary conditions. They would read
@f{eqnarray*}
- \textbf{n}\cdot [p \textbf{1} - 2\; \varepsilon(\textbf{u})]
+ \textbf{n}\cdot [p \textbf{I} - 2\; \varepsilon(\textbf{u})]
=
\textbf S \textbf u \qquad\qquad \textrm{on}\ \Gamma_R,
@f}
@f{eqnarray*}
\textbf u_{\textbf t} &=& 0,
\\
- \textbf n \cdot \left(\textbf{n}\cdot [p \textbf{1} - 2\;
+ \textbf n \cdot \left(\textbf{n}\cdot [p \textbf{I} - 2\;
\varepsilon(\textbf{u})] \right)
&=&
0.
\textbf{n}\cdot\textbf u &=& 0,
\\
(\textbf 1-\textbf n\otimes\textbf n)
- \left(\textbf{n}\cdot [p \textbf{1} - 2\;
+ \left(\textbf{n}\cdot [p \textbf{I} - 2\;
\varepsilon(\textbf{u})] \right)
&=&
0,
\end{array}\right)
\qquad\qquad \textrm{at}\ z=0, x=0,
@f}
-and using natural boundary conditions $\textbf{n}\cdot [p \textbf{1} - 2
+and using natural boundary conditions $\textbf{n}\cdot [p \textbf{I} - 2
\varepsilon(\textbf{u})] = 0$ everywhere else. In other words, at the
left part of the top surface we prescribe that the fluid moves with the
continental plate to the left at speed $-1$, that it moves to the right on the