\partial_j [\partial_i (\partial_j\phi) \phi]
@f}
-FINISH (use that velocity is rotation-free) FINISH
+We now only need to massage that last term a bit more. Using the product rule,
+we get
+@f{align*}
+ \partial_j [\partial_i (\partial_j\phi) \phi]
+ &=
+ \partial_i [\partial_j \partial_j\phi] \phi
+ +
+ \partial_i [partial_j \phi] (\partial_j \phi).
+@f}
+The first of these terms is zero (because, again, the summation over $j$ gives
+$\Delta\phi$, which is zero). The last term can be written as $\frac 12
+\partial_i [(\partial_j\phi)(\partial_j\phi)]$ which is in the desired gradient
+form. As a consequence, we can now finally state that
+@f{align*}
+ [\mathbf{v}\cdot\nabla\mathbf{v}]_i
+ &=
+ \partial_i (\partial_j [(\partial_j\phi) \phi + v_{\infty,j} \partial_j \phi])
+ -
+ \partial_j [\partial_i (\partial_j\phi) \phi]
+ \\
+ &=
+ \partial_i
+ \left[
+ (\partial_j\phi)(\partial_j \phi) + v_{\infty,j} \partial_j \phi
+ -
+ \frac 12 (\partial_j\phi)(\partial_j\phi)
+ \right],
+ \\
+ &=
+ \partial_i
+ \left[
+ \frac 12 (\partial_j\phi)(\partial_j \phi) + v_{\infty,j} \partial_j \phi
+ \right],
+@f}
+or in vector form:
+@f[
+ \mathbf{v}\cdot\nabla\mathbf{v}
+ =
+ \nabla
+ \left[
+ \frac 12 \mathbf{\tilde v}^2
+ + \mathbf{v}_{\infty} \cdot \mathbf{\tilde v}
+ \right],
+@f]
+or in other words:
+@f[
+ p
+ =
+ -\rho
+ \left[
+ \frac 12 \mathbf{\tilde v}^2
+ + \mathbf{v}_{\infty} \cdot \mathbf{\tilde v}
+ \right]
+ =
+ -\rho
+ \left[
+ \frac 12 \mathbf{v}^2
+ -
+ \frac 12 \mathbf{v}_{\infty}^2
+ \right]
+ .
+@f]
+Because the pressure is only determined up to a constant (it appears only with
+a gradient in the equations), an equally valid definition is
+@f[
+ p
+ =
+ -\frac 12 \rho \mathbf{v}^2
+ .
+@f]
+This is exactly Bernoulli's law mentioned above.
<h3>The numerical approximation</h3>