]> https://gitweb.dealii.org/ - dealii.git/commitdiff
More text
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Sat, 28 Oct 2006 14:00:59 +0000 (14:00 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Sat, 28 Oct 2006 14:00:59 +0000 (14:00 +0000)
git-svn-id: https://svn.dealii.org/trunk@14117 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-21/step-21.cc

index 27b90cd72b756ae675bd221cc478f525345c762a..7fd03abb903ee499252a28ec287157d1c2d0318a 100644 (file)
@@ -456,42 +456,21 @@ namespace RandomMedium
 
 
 
-                                // @sect3{The inverse permeability tensor and the inverse mobility function}
-
-                                
-                                 // For the inverse  permeability tensor,
-                                 // <code>KInverse</code>.As in introduction, '
-                                 // assume the heterogeneous is isotropic,
-                                 // so it is a scalar multipy the identity matrix.
-                                //DealII has a base class not only for
-                                 // scalar and generally vector-valued
-                                 // functions (the <code>Function</code> base
-                                 // class) but also for functions that
-                                 // return tensors of fixed dimension
-                                 // and rank, the <code>TensorFunction</code>
-                                 // template. Here, the function under
-                                 // consideration returns a dim-by-dim
-                                 // matrix, i.e. a tensor of rank 2
-                                 // and dimension <code>dim</code>. We then
-                                 // choose the template arguments of
-                                 // the base class appropriately.
-                                 //
-                                 // The interface that the
-                                 // <code>TensorFunction</code> class provides
-                                 // is essentially equivalent to the
-                                 // <code>Function</code> class. In particular,
-                                 // there exists a <code>value_list</code>
-                                 // function that takes a list of
-                                 // points at which to evaluate the
-                                 // function, and returns the values
-                                 // of the function in the second
-                                 // argument, a list of tensors:
-double mobility_inverse (const double S, const double viscosity)
+                                // @sect3{The inverse mobility and saturation functions}
+
+                                // There are two more pieces of data that we
+                                // need to describe, namely the inverse
+                                // mobility function and the saturation
+                                // curve. Their form is also given in the
+                                // introduction:
+double mobility_inverse (const double S,
+                        const double viscosity)
 {
   return 1.0 /(1.0/viscosity * S * S + (1-S) * (1-S));
 }
 
-double f_saturation(const double S, const double viscosity)
+double f_saturation (const double S,
+                    const double viscosity)
 {   
   return S*S /( S * S +viscosity * (1-S) * (1-S));
 }
@@ -500,12 +479,14 @@ double f_saturation(const double S, const double viscosity)
 
 
 
-                                 // @sect4{extract_u and friends}
+                                 // @sect3{extract_u and friends}
 
-                                 // The next five functions are
-                                 // needed for matrix and right hand
-                                 // side assembly. They are described
-                                 // in detail in step-20:
+                                // More tools: We need methods to extract the
+                                // velocity, pressure, and saturation
+                                // components of finite element shape
+                                // functions. These functions here are
+                                // completely analogous to the ones we have
+                                // already used in step-20:
 template <int dim>
 Tensor<1,dim>
 extract_u (const FEValuesBase<dim> &fe_values,
@@ -545,6 +526,8 @@ double extract_p (const FEValuesBase<dim> &fe_values,
   return fe_values.shape_value_component (i,q,dim);
 }
 
+
+
 template <int dim>
 double extract_s (const FEValuesBase<dim> &fe_values,
                   const unsigned int i,
@@ -553,11 +536,13 @@ double extract_s (const FEValuesBase<dim> &fe_values,
   return fe_values.shape_value_component (i,q,dim+1);
 }
 
+
+
 template <int dim>
 Tensor<1,dim>
-extract_grad_s(const FEValuesBase<dim> &fe_values,
-              const unsigned int i,
-              const unsigned int q)
+extract_grad_s (const FEValuesBase<dim> &fe_values,
+               const unsigned int i,
+               const unsigned int q)
 {
   Tensor<1,dim> tmp;
   for (unsigned int d=0; d<dim; ++d)
@@ -568,15 +553,141 @@ extract_grad_s(const FEValuesBase<dim> &fe_values,
 
 
 
-                                 // @sect3{TwoPhaseFlowProblem class implementation}
+                                 // @sect3{Linear solvers and preconditioners}
+
+                                // The linear solvers we use are also
+                                // completely analogous to the ones used in
+                                // step-20. The following classes are
+                                // therefore copied verbatim from there.
+template <class Matrix>
+class InverseMatrix : public Subscriptor
+{
+  public:
+    InverseMatrix (const Matrix &m);
+
+    void vmult (Vector<double>       &dst,
+                const Vector<double> &src) const;
+
+  private:
+    const SmartPointer<const Matrix> matrix;
+
+    mutable GrowingVectorMemory<> vector_memory;    
+};
+
+
+template <class Matrix>
+InverseMatrix<Matrix>::InverseMatrix (const Matrix &m)
+                :
+                matrix (&m)
+{}
 
-                                 // @sect4{TwoPhaseFlowProblem::TwoPhaseFlowProblem}
-                                 //  we use RT(k) X DG(k),DG(k) spaces.
-                                 // time_step is small enough to make the solution 
-                                 // converges stably. 
 
-                               
                                  
+template <class Matrix>
+void InverseMatrix<Matrix>::vmult (Vector<double>       &dst,
+                                   const Vector<double> &src) const
+{
+  SolverControl solver_control (src.size(), 1e-8*src.l2_norm());
+  SolverCG<> cg (solver_control, vector_memory);
+
+  dst = 0;
+  
+  cg.solve (*matrix, dst, src, PreconditionIdentity());        
+}
+
+
+
+class SchurComplement : public Subscriptor
+{
+  public:
+    SchurComplement (const BlockSparseMatrix<double> &A,
+                     const InverseMatrix<SparseMatrix<double> > &Minv);
+
+    void vmult (Vector<double>       &dst,
+                const Vector<double> &src) const;
+
+  private:
+    const SmartPointer<const BlockSparseMatrix<double> > system_matrix;
+    const SmartPointer<const InverseMatrix<SparseMatrix<double> > > m_inverse;
+    
+    mutable Vector<double> tmp1, tmp2;
+};
+
+
+
+SchurComplement::
+SchurComplement (const BlockSparseMatrix<double> &A,
+                const InverseMatrix<SparseMatrix<double> > &Minv)
+                :
+                system_matrix (&A),
+                m_inverse (&Minv),
+                tmp1 (A.block(0,0).m()),
+                tmp2 (A.block(0,0).m())
+{}
+
+
+void SchurComplement::vmult (Vector<double>       &dst,
+                             const Vector<double> &src) const
+{
+  system_matrix->block(0,1).vmult (tmp1, src);
+  m_inverse->vmult (tmp2, tmp1);
+  system_matrix->block(1,0).vmult (dst, tmp2);
+}
+
+
+
+class ApproximateSchurComplement : public Subscriptor
+{
+  public:
+    ApproximateSchurComplement (const BlockSparseMatrix<double> &A);
+
+    void vmult (Vector<double>       &dst,
+                const Vector<double> &src) const;
+
+  private:
+    const SmartPointer<const BlockSparseMatrix<double> > system_matrix;
+    
+    mutable Vector<double> tmp1, tmp2;
+};
+
+
+ApproximateSchurComplement::
+ApproximateSchurComplement (const BlockSparseMatrix<double> &A)
+                :
+                system_matrix (&A),
+                tmp1 (A.block(0,0).m()),
+                tmp2 (A.block(0,0).m())
+{}
+
+
+void ApproximateSchurComplement::vmult (Vector<double>       &dst,
+                                        const Vector<double> &src) const
+{
+  system_matrix->block(0,1).vmult (tmp1, src);
+  system_matrix->block(0,0).precondition_Jacobi (tmp2, tmp1);
+  system_matrix->block(1,0).vmult (dst, tmp2);
+}
+
+
+
+
+
+                                 // @sect3{<code>TwoPhaseFlowProblem</code> class implementation}
+
+                                // Here now the implementation of the main
+                                // class. Much of it is actually copied from
+                                // step-20, so we won't comment on it in much
+                                // detail. You should try to get familiar
+                                // with that program first, then most of what
+                                // is happening here should be mostly clear.
+
+                                 // @sect4{TwoPhaseFlowProblem::TwoPhaseFlowProblem}
+                                 // First for the constructor. We use $RT_k
+                                 // \times DG_k \times DG_k$ spaces. The time
+                                 // step is set to zero initially, but will be
+                                 // computed before it is needed first, as
+                                 // described in a subsection of the
+                                 // introduction.
 template <int dim>
 TwoPhaseFlowProblem<dim>::TwoPhaseFlowProblem (const unsigned int degree)
                :
@@ -586,9 +697,8 @@ TwoPhaseFlowProblem<dim>::TwoPhaseFlowProblem (const unsigned int degree)
                    FE_DGQ<dim>(degree), 1),
                dof_handler (triangulation),
                n_refinement_steps (5),
-               time_step (10.0/std::pow(2.0, double(n_refinement_steps))/6),
+               time_step (0),
                 viscosity (0.2)
-                
 {}
 
 
@@ -596,27 +706,19 @@ TwoPhaseFlowProblem<dim>::TwoPhaseFlowProblem (const unsigned int degree)
                                  // @sect4{TwoPhaseFlowProblem::make_grid_and_dofs}
 
                                  // This next function starts out with
-                                 // well-known functions calls that
-                                 // create and refine a mesh, and then
-                                 // associate degrees of freedom with
-                                 // it:
+                                 // well-known functions calls that create and
+                                 // refine a mesh, and then associate degrees
+                                 // of freedom with it. It does all the same
+                                 // things as in step-20, just now for three
+                                 // components instead of two.
 template <int dim>
 void TwoPhaseFlowProblem<dim>::make_grid_and_dofs ()
 {
-  GridGenerator::hyper_cube (triangulation, 0, 1);
-  
-  for (unsigned int f=0; f<GeometryInfo<dim>::faces_per_cell; ++f)
-    { if (triangulation.begin()->face(f)->center()[0] == 0)
-      triangulation.begin()->face(f)->set_boundary_indicator (1);
-      if (triangulation.begin()->face(f)->center()[0] == 1)
-       triangulation.begin()->face(f)->set_boundary_indicator (2);
-    }
-
+  GridGenerator::hyper_cube (triangulation, 0, 1);  
   triangulation.refine_global (n_refinement_steps);
   
   dof_handler.distribute_dofs (fe); 
   DoFRenumbering::component_wise (dof_handler);
-
                                   
   std::vector<unsigned int> dofs_per_component (dim+2);
   DoFTools::count_dofs_per_component (dof_handler, dofs_per_component);  
@@ -627,14 +729,11 @@ void TwoPhaseFlowProblem<dim>::make_grid_and_dofs ()
   std::cout << "Number of active cells: "
            << triangulation.n_active_cells()
            << std::endl
-           << "Total number of cells: "
-           << triangulation.n_cells()
-           << std::endl
             << "Number of degrees of freedom: "
            << dof_handler.n_dofs()
             << " (" << n_u << '+' << n_p << '+'<< n_s <<')'
-           << std::endl;
-
+           << std::endl
+           << std::endl;
   
   const unsigned int
     n_couplings = dof_handler.max_couplings_between_dofs();
@@ -651,11 +750,11 @@ void TwoPhaseFlowProblem<dim>::make_grid_and_dofs ()
   sparsity_pattern.block(2,2).reinit (n_s, n_s, n_couplings);
   
   sparsity_pattern.collect_sizes();
-
   
   DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
   sparsity_pattern.compress();
 
+  
   system_matrix.reinit (sparsity_pattern);
 
                                    
@@ -676,28 +775,32 @@ void TwoPhaseFlowProblem<dim>::make_grid_and_dofs ()
   system_rhs.block(1).reinit (n_p);
   system_rhs.block(2).reinit (n_s);
   system_rhs.collect_sizes ();
-
-
 }
 
 
                                  // @sect4{TwoPhaseFlowProblem::assemble_system}
-                                 // The function that
-                                 // assembles the linear system has
-                                 // mostly been discussed already in
-                                 // the introduction to this
-                                 // test case. We want to emphasize that
-                                 // we assemble the first two equations
-                                 // for velocity and pressure, but 
-                                 // for saturation we only assemble 
-                                 // the Matrixblock(2,2), for Matrixblock(0,2)
-                                 // we will assemble it in "solve()", because
-                                 //at that time, we have the new velocity solved
-                                 // we can use it to assemble Matrixblock(0,2)
-                    
+
+                                 // This is the function that assembles the
+                                 // linear system, or at least everything
+                                 // except the (1,3) block that depends on the
+                                 // still-unknown velocity computed during
+                                 // this time step (we deal with this in
+                                 // <code>assemble_rhs_S</code>). Much of it
+                                 // is again as in step-20, but we have to
+                                 // deal with some nonlinearity this time.
+                                 // However, the top of the function is pretty
+                                 // much as usual (note that we set matrix and
+                                 // right hand side to zero at the beginning
+                                 // &mdash; something we didn't have to do for
+                                 // stationary problems since there we use
+                                 // each matrix object only once and it is
+                                 // empty at the beginning anyway).
 template <int dim>
 void TwoPhaseFlowProblem<dim>::assemble_system () 
 {  
+  system_matrix=0;
+  system_rhs=0;
+
   QGauss<dim>   quadrature_formula(degree+2); 
   QGauss<dim-1> face_quadrature_formula(degree+2);
 
@@ -718,25 +821,9 @@ void TwoPhaseFlowProblem<dim>::assemble_system ()
 
   std::vector<unsigned int> local_dof_indices (dofs_per_cell);
   
-                                   // The next step is to declare
-                                   // objects that represent the
-                                   // source term, pressure boundary
-                                   // value, and coefficient in the
-                                   // equation. In addition to these
-                                   // objects that represent
-                                   // continuous functions, we also
-                                   // need arrays to hold their values
-                                   // at the quadrature points of
-                                   // individual cells (or faces, for
-                                   // the boundary values). Note that
-                                   // in the case of the coefficient,
-                                   // the array has to be one of
-                                   // matrices.
   const PressureRightHandSide<dim>  pressure_right_hand_side;
   const PressureBoundaryValues<dim> pressure_boundary_values;
-  const RandomMedium::KInverse<dim> k_inverse;
-
-   
+  const RandomMedium::KInverse<dim> k_inverse;   
   
   std::vector<double>               pressure_rhs_values (n_q_points);
   std::vector<double>               boundary_values (n_face_q_points);
@@ -746,57 +833,76 @@ void TwoPhaseFlowProblem<dim>::assemble_system ()
   std::vector<std::vector<Tensor<1,dim> > >  old_solution_grads(n_q_points,
                                                                 std::vector<Tensor<1,dim> > (dim+2));
   
-  
-
-                                   // With all this in place, we can
-                                   // go on with the loop over all
-                                   // cells. The body of this loop has
-                                   // been discussed in the
-                                   // introduction, and will not be
-                                   // commented any further here:
   typename DoFHandler<dim>::active_cell_iterator
     cell = dof_handler.begin_active(),
     endc = dof_handler.end();
-  unsigned int cellnum=0;
-  system_matrix=0;
-  system_rhs=0;
   for (; cell!=endc; ++cell)
-    { cellnum++;
+    { 
       fe_values.reinit (cell);
       local_matrix = 0;
       local_rhs = 0;
 
+                                      // Here's the first significant
+                                      // difference: We have to get the
+                                      // values of the saturation function of
+                                      // the previous time step at the
+                                      // quadrature points. To this end, we
+                                      // can use the
+                                      // FEValues::get_function_values
+                                      // (previously already used in step-9,
+                                      // step-14 and step-15), a function
+                                      // that takes a solution vector and
+                                      // returns a list of function values at
+                                      // the quadrature points of the present
+                                      // cell. In fact, it returns the
+                                      // complete vector-valued solution at
+                                      // each quadrature point, i.e. not only
+                                      // the saturation but also the
+                                      // velocities and pressure:
       fe_values.get_function_values (old_solution, old_solution_values);
+
+                                      // Then we also have to get the values
+                                      // of the pressure right hand side and
+                                      // of the inverse permeability tensor
+                                      // at the quadrature points:
       pressure_right_hand_side.value_list (fe_values.get_quadrature_points(),
                                           pressure_rhs_values);
       k_inverse.value_list (fe_values.get_quadrature_points(),
                             k_inverse_values);
-      
+
+                                      // With all this, we can now loop over
+                                      // all the quadrature points and shape
+                                      // functions on this cell and assemble
+                                      // those parts of the matrix and right
+                                      // hand side that we deal with in this
+                                      // function. The individual terms in
+                                      // the contributions should be
+                                      // self-explanatory given the explicit
+                                      // form of the bilinear form stated in
+                                      // the introduction:
       for (unsigned int q=0; q<n_q_points; ++q)            
         for (unsigned int i=0; i<dofs_per_cell; ++i)
           {
            const double old_s = old_solution_values[q](dim+1);
 
-            const Tensor<1,dim> phi_i_u = extract_u (fe_values, i, q);
-           const double div_phi_i_u = extract_div_u (fe_values, i, q);
-            const double phi_i_p = extract_p (fe_values, i, q);
-           const double phi_i_s = extract_s (fe_values, i, q); 
+            const Tensor<1,dim> phi_i_u      = extract_u (fe_values, i, q);
+           const double        div_phi_i_u  = extract_div_u (fe_values, i, q);
+            const double        phi_i_p      = extract_p (fe_values, i, q);
+           const double        phi_i_s      = extract_s (fe_values, i, q); 
            const Tensor<1,dim> grad_phi_i_s = extract_grad_s(fe_values, i, q);
-                    
             
             for (unsigned int j=0; j<dofs_per_cell; ++j)
               {
-                const Tensor<1,dim> phi_j_u = extract_u (fe_values, j, q);
-               const double div_phi_j_u = extract_div_u (fe_values, j, q);             
-                const double phi_j_p = extract_p (fe_values, j, q);
-                const double phi_j_s = extract_s (fe_values, j, q);  
+                const Tensor<1,dim> phi_j_u     = extract_u (fe_values, j, q);
+               const double        div_phi_j_u = extract_div_u (fe_values, j, q);
+                const double        phi_j_p     = extract_p (fe_values, j, q);
+                const double        phi_j_s     = extract_s (fe_values, j, q);
                
                 local_matrix(i,j) += (phi_i_u * k_inverse_values[q] *
-                                     mobility_inverse(old_s,viscosity) * phi_j_u            
+                                     mobility_inverse(old_s,viscosity) * phi_j_u
                                       - div_phi_i_u * phi_j_p
                                       - phi_i_p * div_phi_j_u
-                                     + phi_i_s * phi_j_s
-               )
+                                     + phi_i_s * phi_j_s)
                                      * fe_values.JxW(q);     
               }
 
@@ -804,8 +910,10 @@ void TwoPhaseFlowProblem<dim>::assemble_system ()
                             fe_values.JxW(q);
           }
       
-                                      //here, we compute the boundary values for pressure 
 
+                                      // Next, we also have to deal with the
+                                      // pressure boundary values. This,
+                                      // again is as in step-20:
       for (unsigned int face_no=0;
           face_no<GeometryInfo<dim>::faces_per_cell;
           ++face_no)
@@ -834,19 +942,7 @@ void TwoPhaseFlowProblem<dim>::assemble_system ()
                                        // over all cells is to
                                        // transfer local contributions
                                        // into the global matrix and
-                                       // right hand side vector. Note
-                                       // that we use exactly the same
-                                       // interface as in previous
-                                       // examples, although we now
-                                       // use block matrices and
-                                       // vectors instead of the
-                                       // regular ones. In other
-                                       // words, to the outside world,
-                                       // block objects have the same
-                                       // interface as matrices and
-                                       // vectors, but they
-                                       // additionally allow to access
-                                       // individual blocks.
+                                       // right hand side vector:
       cell->get_dof_indices (local_dof_indices);
       for (unsigned int i=0; i<dofs_per_cell; ++i)
       
@@ -857,12 +953,25 @@ void TwoPhaseFlowProblem<dim>::assemble_system ()
          }
       
       for (unsigned int i=0; i<dofs_per_cell; ++i)
-        system_rhs(local_dof_indices[i]) += local_rhs(i);      
-       
+        system_rhs(local_dof_indices[i]) += local_rhs(i);
     }
 }
 
 
+                                // So much for assembly of matrix and right
+                                // hand side. Note that we do not have to
+                                // interpolate and apply boundary values
+                                // since they have all been taken care of in
+                                // the weak form already.
+
+
+                                // @sect4{TwoPhaseFlowProblem::assemble_rhs_S}
+
+                                // As explained in the introduction, we can
+                                // only evaluate the right hand side of the
+                                // saturation equation once the velocity has
+                                // been computed. We therefore have this
+                                // separate function to this end.
 template <int dim>
 void TwoPhaseFlowProblem<dim>::assemble_rhs_S () 
 {  
@@ -876,13 +985,13 @@ void TwoPhaseFlowProblem<dim>::assemble_rhs_S ()
                                    update_q_points  | update_JxW_values);
   FEFaceValues<dim> fe_face_values_neighbor (fe, face_quadrature_formula, 
                                             update_values);
-  
  
   const unsigned int   dofs_per_cell   = fe.dofs_per_cell;
   const unsigned int   n_q_points      = quadrature_formula.n_quadrature_points;
   const unsigned int   n_face_q_points = face_quadrature_formula.n_quadrature_points;
   
   Vector<double>       local_rhs (dofs_per_cell);
+
   std::vector<Vector<double> > old_solution_values(n_q_points, Vector<double>(dim+2));
   std::vector<Vector<double> > old_solution_values_face(n_face_q_points, Vector<double>(dim+2));
   std::vector<Vector<double> > old_solution_values_face_neighbor(n_face_q_points, Vector<double>(dim+2));
@@ -891,11 +1000,12 @@ void TwoPhaseFlowProblem<dim>::assemble_rhs_S ()
 
   std::vector<double> neighbor_saturation (n_face_q_points);
   std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+
+  SaturationBoundaryValues<dim> saturation_boundary_values;
   
   typename DoFHandler<dim>::active_cell_iterator
     cell = dof_handler.begin_active(),
     endc = dof_handler.end();
-
   for (; cell!=endc; ++cell)
     {
       local_rhs = 0;
@@ -903,7 +1013,13 @@ void TwoPhaseFlowProblem<dim>::assemble_rhs_S ()
 
       fe_values.get_function_values (old_solution, old_solution_values);
       fe_values.get_function_values (solution, present_solution_values);
-    
+
+                                      // First for the cell terms. These are,
+                                      // following the formulas in the
+                                      // introduction, $(S^n,\sigma)-(F(S^n)
+                                      // \mathbf{v}^{n+1},\nabla sigma)$,
+                                      // where $\sigma$ is the saturation
+                                      // component of the test function:
       for (unsigned int q=0; q<n_q_points; ++q) 
        for (unsigned int i=0; i<dofs_per_cell; ++i)
          {
@@ -912,18 +1028,37 @@ void TwoPhaseFlowProblem<dim>::assemble_rhs_S ()
            for (unsigned int d=0; d<dim; ++d)
              present_u[d] = present_solution_values[q](d);
 
-           const double phi_i_s = extract_s(fe_values, i, q);
+           const double        phi_i_s      = extract_s(fe_values, i, q);
            const Tensor<1,dim> grad_phi_i_s = extract_grad_s(fe_values, i, q);
                     
-           local_rhs(i) += (
-             time_step *(f_saturation(old_s,viscosity) * present_u * grad_phi_i_s)+
-             old_s * phi_i_s)
-                           * fe_values.JxW(q);
+           local_rhs(i) += (time_step *
+                            f_saturation(old_s,viscosity) *
+                            present_u *
+                            grad_phi_i_s
+                            +
+                            old_s * phi_i_s)
+                           *
+                           fe_values.JxW(q);
          }
-                                      //Here is our numerical flux computation
-                                      // Finding neighbor as step-12
-                                 
-      for (unsigned int face_no=0; face_no<GeometryInfo<dim>::faces_per_cell;++face_no)
+
+                                      // Secondly, we have to deal with the
+                                      // flux parts on the face
+                                      // boundaries. This was a bit more
+                                      // involved because we first have to
+                                      // determine which are the influx and
+                                      // outflux parts of the cell
+                                      // boundary. If we have an influx
+                                      // boundary, we need to evaluate the
+                                      // saturation on the other side of the
+                                      // face (or the boundary values, if we
+                                      // are at the boundary of the domain).
+                                      //
+                                      // All this is a bit tricky, but has
+                                      // been explained in some detail
+                                      // already in step-9. Take a look there
+                                      // how this is supposed to work!
+      for (unsigned int face_no=0; face_no<GeometryInfo<dim>::faces_per_cell;
+          ++face_no)
        {
          fe_face_values.reinit (cell, face_no);
 
@@ -931,17 +1066,10 @@ void TwoPhaseFlowProblem<dim>::assemble_rhs_S ()
          fe_face_values.get_function_values (solution, present_solution_values_face);
 
          if (cell->at_boundary(face_no))
-           {
-//TODO: use real boundary values from SaturationBoundaryValues!              
-             if (cell->face(face_no)->boundary_indicator() == 1)
-               for (unsigned int q=0;q<n_face_q_points;++q)
-                 neighbor_saturation[q] = 1;
-             else
-               for (unsigned int q=0;q<n_face_q_points;++q)
-                 neighbor_saturation[q] = 0;                    
-           }
+           saturation_boundary_values
+             .value_list (fe_face_values.get_quadrature_points(),
+                          neighbor_saturation);
          else
-                                            // there is a neighbor behind this face
            {
              const typename DoFHandler<dim>::active_cell_iterator
                neighbor = cell->neighbor(face_no);
@@ -950,192 +1078,55 @@ void TwoPhaseFlowProblem<dim>::assemble_rhs_S ()
 
              fe_face_values_neighbor.reinit (neighbor, neighbor_face);
             
-             fe_face_values_neighbor.get_function_values (old_solution,
-                                                          old_solution_values_face_neighbor);
+             fe_face_values_neighbor
+               .get_function_values (old_solution,
+                                     old_solution_values_face_neighbor);
             
-             for (unsigned int q=0;q<n_face_q_points;++q)
+             for (unsigned int q=0; q<n_face_q_points; ++q)
                neighbor_saturation[q] = old_solution_values_face_neighbor[q](dim+1);
            }
           
 
-         for (unsigned int q=0;q<n_face_q_points;++q)
+         for (unsigned int q=0; q<n_face_q_points; ++q)
            {
              Tensor<1,dim> present_u_face;
              for (unsigned int d=0; d<dim; ++d)
-               present_u_face[d] = present_solution_values_face[q](d);
-               }
+               present_u_face[d] = present_solution_values_face[q](d);
+
              const double normal_flux = present_u_face *
                                         fe_face_values.normal_vector(q);
 
              const bool is_outflow_q_point = (normal_flux >= 0);
                                     
-             if (is_outflow_q_point == true)
-               {
-                 for (unsigned int i=0; i<dofs_per_cell; ++i)
-                   { 
-                     const double outflow = -time_step * normal_flux 
-                                            * f_saturation(old_solution_values_face[q](dim+1),viscosity)
-                                            * extract_s(fe_face_values,i,q)
-                                            * fe_face_values.JxW(q);
-                     local_rhs(i) += outflow;
-                   } 
-               }
-             
-             else
-               {
-                 for (unsigned int i=0; i<dofs_per_cell; ++i)
-                   {
-                     const double inflow = -time_step * normal_flux 
-                                           * f_saturation( neighbor_saturation[q],viscosity)
-                                           * extract_s(fe_face_values,i,q)
-                                           * fe_face_values.JxW(q);
-                     local_rhs(i) += inflow;
-                   }
-               
-               }
-       
+             for (unsigned int i=0; i<dofs_per_cell; ++i)
+               local_rhs(i) -= time_step *
+                               normal_flux *
+                               f_saturation((is_outflow_q_point == true
+                                             ?
+                                             old_solution_values_face[q](dim+1)
+                                             :
+                                             neighbor_saturation[q]),
+                                            viscosity) *
+                               extract_s(fe_face_values,i,q) *
+                               fe_face_values.JxW(q);
            }
-             
        }
   
       cell->get_dof_indices (local_dof_indices);
       for (unsigned int i=0; i<dofs_per_cell; ++i)
-       {
-         system_rhs(local_dof_indices[i]) += local_rhs(i);
-       }
-               
-    }  
-}
-
-  
-
-                                 // @sect3{Linear solvers and preconditioners}
-
-                                 // @sect4{The <code>InverseMatrix</code> class template}
-                                 
-                                // Everything here is completely same with step-20
-                                 
-
-
-template <class Matrix>
-class InverseMatrix : public Subscriptor
-{
-  public:
-    InverseMatrix (const Matrix &m);
-
-    void vmult (Vector<double>       &dst,
-                const Vector<double> &src) const;
-
-  private:
-    const SmartPointer<const Matrix> matrix;
-
-    mutable GrowingVectorMemory<> vector_memory;    
-};
-
-
-template <class Matrix>
-InverseMatrix<Matrix>::InverseMatrix (const Matrix &m)
-                :
-                matrix (&m)
-{}
-
-
-                                 
-template <class Matrix>
-void InverseMatrix<Matrix>::vmult (Vector<double>       &dst,
-                                   const Vector<double> &src) const
-{
-  SolverControl solver_control (src.size(), 1e-8*src.l2_norm());
-  SolverCG<> cg (solver_control, vector_memory);
-
-  dst = 0;
-  
-  cg.solve (*matrix, dst, src, PreconditionIdentity());        
-}
-
-
-                                 // @sect4{The <code>SchurComplement</code> class template}
-                                                                 
-class SchurComplement : public Subscriptor
-{
-  public:
-    SchurComplement (const BlockSparseMatrix<double> &A,
-                     const InverseMatrix<SparseMatrix<double> > &Minv);
-
-    void vmult (Vector<double>       &dst,
-                const Vector<double> &src) const;
-
-  private:
-    const SmartPointer<const BlockSparseMatrix<double> > system_matrix;
-    const SmartPointer<const InverseMatrix<SparseMatrix<double> > > m_inverse;
-    
-    mutable Vector<double> tmp1, tmp2;
-};
-
-
-SchurComplement::SchurComplement (const BlockSparseMatrix<double> &A,
-                                  const InverseMatrix<SparseMatrix<double> > &Minv)
-                :
-                system_matrix (&A),
-                m_inverse (&Minv),
-                tmp1 (A.block(0,0).m()),
-                tmp2 (A.block(0,0).m())
-{}
-
-
-void SchurComplement::vmult (Vector<double>       &dst,
-                             const Vector<double> &src) const
-{
-  system_matrix->block(0,1).vmult (tmp1, src);
-  m_inverse->vmult (tmp2, tmp1);
-  system_matrix->block(1,0).vmult (dst, tmp2);
-}
-
-
-                                 // @sect4{The <code>ApproximateSchurComplement</code> class template}
-
-class ApproximateSchurComplement : public Subscriptor
-{
-  public:
-    ApproximateSchurComplement (const BlockSparseMatrix<double> &A);
-
-    void vmult (Vector<double>       &dst,
-                const Vector<double> &src) const;
-
-  private:
-    const SmartPointer<const BlockSparseMatrix<double> > system_matrix;
-    
-    mutable Vector<double> tmp1, tmp2;
-};
-
-
-ApproximateSchurComplement::ApproximateSchurComplement (const BlockSparseMatrix<double> &A)
-                :
-                system_matrix (&A),
-                tmp1 (A.block(0,0).m()),
-                tmp2 (A.block(0,0).m())
-{}
-
-
-void ApproximateSchurComplement::vmult (Vector<double>       &dst,
-                                        const Vector<double> &src) const
-{
-  system_matrix->block(0,1).vmult (tmp1, src);
-  system_matrix->block(0,0).precondition_Jacobi (tmp2, tmp1);
-  system_matrix->block(1,0).vmult (dst, tmp2);
-}
+       system_rhs(local_dof_indices[i]) += local_rhs(i);       
+    }
+} 
 
 
 
                                  // @sect4{TwoPhaseFlowProblem::solve}
 
-                                 // After all these preparations,
-                                 // we finally solves the linear
-                                 // system for velocity and pressure.
-                                 // And remember, we still have to assemble 
-                                 // the Matirxbloc(2,0) after velocity is computed
-                                 // , then use it to solve saturation.
+                                 // After all these preparations, we finally
+                                 // solve the linear system for velocity and
+                                 // pressure in the same way as in
+                                 // step-20. After that, we have to deal with
+                                 // the saturation equation (see below):
 template <int dim>
 void TwoPhaseFlowProblem<dim>::solve () 
 {
@@ -1146,7 +1137,9 @@ void TwoPhaseFlowProblem<dim>::solve ()
   Vector<double> tmp2 (solution.block(2).size());
   
 
-                                  // this part is for pressure
+                                  // First the pressure, using the pressure
+                                  // Schur complement of the first two
+                                  // equations:
   {
     m_inverse.vmult (tmp, system_rhs.block(0));
     system_matrix.block(1,0).vmult (schur_rhs, tmp);
@@ -1176,13 +1169,7 @@ void TwoPhaseFlowProblem<dim>::solve ()
               << std::endl;
   }
 
-                                   //  this part is for velocity. The
-                                   // equation reads MU=-B^TP+F, and
-                                   // we solve it by first computing
-                                   // the right hand side, and then
-                                   // multiplying it with the object
-                                   // that represents the inverse of
-                                   // the mass matrix:
+                                   // Now the velocity:
   {
     system_matrix.block(0,1).vmult (tmp, solution.block(1));
     tmp *= -1;
@@ -1191,21 +1178,30 @@ void TwoPhaseFlowProblem<dim>::solve ()
     m_inverse.vmult (solution.block(0), tmp);
   }
 
-                                  //This part is for saturation.
-                                  // Here are many complicated functions
-                                  //which are very similiar with the
-                                  //assemble_system() part.
-                                  // For DG(0), we have to consider the discontinuty
-                                  // of the solution, then as in Introduction,
-                                  // compute numerical flux and judge it is in-flow or out-flow.
-                                  // After assemble Matrixbloc(2,0)
-                                  // , we could compute saturation directly. 
+                                  // Finally, we have to take care of the
+                                  // saturation equation. The first business
+                                  // we have here is to determine the time
+                                  // step using the formula in the
+                                  // introduction. Knowing the shape of our
+                                  // domain and that we created the mesh by
+                                  // regular subdivision of cells, we can
+                                  // compute the diameter of each of our
+                                  // cells quite easily (in fact we use the
+                                  // linear extensions in coordinate
+                                  // directions of the cells, not the
+                                  // diameter). The maximal velocity we
+                                  // compute using a helper function defined
+                                  // below:
   time_step = std::pow(0.5, double(n_refinement_steps)) /
              get_maximal_velocity();
-  
+
+                                  // The next step is to assemble the right
+                                  // hand side, and then to pass everything
+                                  // on for solution. At the end, we project
+                                  // back saturations onto the physically
+                                  // reasonable range:
+  assemble_rhs_S ();
   {
-    assemble_rhs_S ();
     
     SolverControl solver_control (system_matrix.block(2,2).m(),
                                  1e-8*system_rhs.block(2).l2_norm());
@@ -1217,7 +1213,7 @@ void TwoPhaseFlowProblem<dim>::solve ()
        
     std::cout << "   "
              << solver_control.last_step()
-              << " CG iterations to obtain convergence for saturation."
+              << " CG iterations for saturation."
               << std::endl;            
   } 
 
@@ -1228,9 +1224,7 @@ void TwoPhaseFlowProblem<dim>::solve ()
 
                                  // @sect4{TwoPhaseFlowProblem::output_results}
 
-                                 // The output_results function is
-                                 // the one in which we generate
-                                 // graphical output.
+                                 // There is nothing surprising here:
 template <int dim>
 void TwoPhaseFlowProblem<dim>::output_results ()  const
 {  
@@ -1338,8 +1332,6 @@ TwoPhaseFlowProblem<dim>::get_maximal_velocity () const
 template <int dim>
 void TwoPhaseFlowProblem<dim>::run () 
 {
-  std::cout << "Solving problem in " <<dim << " space dimensions." << std::endl;
-  
   make_grid_and_dofs();
   
   ConstraintMatrix constraints;
@@ -1369,8 +1361,9 @@ void TwoPhaseFlowProblem<dim>::run ()
       time += time_step;
       ++timestep_number;
       std::cout << "   Now at t=" << time
-               << ", dt=" << time_step
-               << std::endl;
+               << ", dt=" << time_step << '.'
+               << std::endl
+               << std::endl;
     }
   while (time <= 250);
 }

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.