df[j][l] = -DF[j] * DF[l];
}
// Solve [f'(x)]d=f(x)
- Tensor<1, dim> delta;
- contract (delta, invert(df), static_cast<const Tensor<1,dim>&>(f));
+ Tensor<1, dim> delta = invert(df) * static_cast<const Tensor<1,dim>&>(f);
// do a line search
double step_length = 1;
do
}
// Solve [f'(x)]d=f(x)
- Tensor<1,spacedim> delta;
Tensor<2,spacedim> df_inverse = invert(df);
- contract (delta, df_inverse, static_cast<const Tensor<1,spacedim>&>(f));
+ Tensor<1, spacedim> delta =
+ df_inverse * static_cast<const Tensor<1, spacedim> &>(f);
#ifdef DEBUG_TRANSFORM_REAL_TO_UNIT_CELL
std::cout << " delta=" << delta << std::endl;
while (f.norm()>eps && loop++<loop_limit)
{
// Solve [df(x)]d=f(x)
- Tensor<1,dim1> d;
- Tensor<2,dim1> df_1;
-
- df_1 = invert(df);
- contract (d, df_1, static_cast<const Tensor<1,dim1>&>(f));
- p_unit -= d;
+ p_unit -= invert(df) * static_cast<const Tensor<1,dim1>&>(f);
for (unsigned int j=0; j<dim1; ++j)
{
// compute Y^-1 g
const Tensor<2,dim> Y_inverse = invert(Y);
- contract (derivative, Y_inverse, projected_derivative);
+ derivative = Y_inverse * projected_derivative;
// finally symmetrize the derivative
DerivativeDescription::symmetrize (derivative);