The second purpose of the program was to compute the value of pi to
-good accuracy. This is the output of this part of the program:
+good accuracy. This is the output of this part of the program the last
+time it was updated:
@code
Output of grids into gnuplot files:
===================================
==============================
Degree = 1
cells eval.pi error
- 5 1.9999999999999993 1.1416e+00 -
+ 5 1.9999999999999991 1.1416e+00 -
20 2.8284271247461890 3.1317e-01 1.87
80 3.0614674589207174 8.0125e-02 1.97
- 320 3.1214451522580511 2.0148e-02 1.99
+ 320 3.1214451522580515 2.0148e-02 1.99
1280 3.1365484905459380 5.0442e-03 2.00
5120 3.1403311569547516 1.2615e-03 2.00
cells eval.pi error
5 3.1045694996615860 3.7023e-02 -
20 3.1391475703122267 2.4451e-03 3.92
- 80 3.1414377167038290 1.5494e-04 3.98
- 320 3.1415829366419006 9.7169e-06 4.00
- 1280 3.1415920457576898 6.0783e-07 4.00
- 5120 3.1415926155921117 3.7998e-08 4.00
+ 80 3.1414377167038294 1.5494e-04 3.98
+ 320 3.1415829366419010 9.7169e-06 4.00
+ 1280 3.1415920457576911 6.0783e-07 4.00
+ 5120 3.1415926155921130 3.7998e-08 4.00
Degree = 3
cells eval.pi error
- 5 3.1410033851499288 5.8927e-04 -
- 20 3.1415830393583839 9.6142e-06 5.94
- 80 3.1415925017363797 1.5185e-07 5.98
- 320 3.1415926512106696 2.3791e-09 6.00
- 1280 3.1415926535525927 3.7200e-11 6.00
- 5120 3.1415926535892100 5.8302e-13 6.00
+ 5 3.1410033851499310 5.8927e-04 -
+ 20 3.1415830393583857 9.6142e-06 5.94
+ 80 3.1415925017363828 1.5185e-07 5.98
+ 320 3.1415926512106704 2.3791e-09 6.00
+ 1280 3.1415926535525944 3.7199e-11 6.00
+ 5120 3.1415926535892122 5.8117e-13 6.00
Degree = 4
cells eval.pi error
- 5 3.1415871927401131 5.4608e-06 -
- 20 3.1415926314742428 2.2116e-08 7.95
- 80 3.1415926535026202 8.7173e-11 7.99
- 320 3.1415926535894498 3.4350e-13 7.99
- 1280 3.1415926535897896 3.4671e-15 6.63
- 5120 3.1415926535897909 2.4009e-15 0.53
+ 5 3.1415871927401136 5.4608e-06 -
+ 20 3.1415926314742446 2.2116e-08 7.95
+ 80 3.1415926535026215 8.7172e-11 7.99
+ 320 3.1415926535894516 3.4157e-13 8.00
+ 1280 3.1415926535897918 1.5339e-15 7.80
+ 5120 3.1415926535897927 5.2649e-16 1.54
Computation of Pi by the perimeter:
===================================
20 3.1404050605605449 1.1876e-03 3.81
80 3.1415157631807009 7.6890e-05 3.95
320 3.1415878042798613 4.8493e-06 3.99
- 1280 3.1415923498174534 3.0377e-07 4.00
+ 1280 3.1415923498174529 3.0377e-07 4.00
5120 3.1415926345931995 1.8997e-08 4.00
Degree = 3
20 3.1415913432549156 1.3103e-06 6.23
80 3.1415926341726910 1.9417e-08 6.08
320 3.1415926532906897 2.9910e-10 6.02
- 1280 3.1415926535851355 4.6578e-12 6.00
- 5120 3.1415926535897190 7.4216e-14 5.97
+ 1280 3.1415926535851364 4.6570e-12 6.01
+ 5120 3.1415926535897190 7.4157e-14 5.97
Degree = 4
cells eval.pi error
5 3.1415921029432572 5.5065e-07 -
20 3.1415926513737595 2.2160e-09 7.96
- 80 3.1415926535810712 8.7222e-12 7.99
- 320 3.1415926535897576 3.5525e-14 7.94
- 1280 3.1415926535897936 4.6729e-16 6.25
- 5120 3.1415926535897918 1.4929e-15 -1.68
+ 80 3.1415926535810703 8.7230e-12 7.99
+ 320 3.1415926535897576 3.5705e-14 7.93
+ 1280 3.1415926535897918 1.3785e-15 4.70
+ 5120 3.1415926535897944 1.3798e-15 -0.00
@endcode
+@note Once the error reaches a level on the
+ order of $10^{-14}$ or $10^{-15}$, it is essentially dominated by
+ round-off and consequently dominated by what precisely the library is doing
+ in internal computations. Since these things change, the precise values
+ and errors change from release to release at these round-off levels,
+ though the overall order of errors should of course remain the same.
-
-One of the immediate observations from the output is that in all cases the
-values converge quickly to the true value of
+One of the immediate observations from the output above is that in all cases
+the values converge quickly to the true value of
$\pi=3.141592653589793238462643$. Note that for the $Q_4$ mapping, we are
already in the regime of roundoff errors and the convergence rate levels off,
which is already quite a lot. However, also note that for the $Q_1$ mapping,