reads
$R_i = \left(\frac{\mathbf{w}^{k}_{n+1} - \mathbf{w}_n}{\delta t}
, \mathbf{z}_i \right)_K +
- \theta \mathbf{B}({\mathbf{w}^{k}_{n+1})(\mathbf{z}_i)_K +
- (1-\theta) \mathbf{B}({\mathbf{w}_{n}) (\mathbf{z}_i)_K $
+ \theta \mathbf{B}({\mathbf{w}^{k}_{n+1}})(\mathbf{z}_i)_K +
+ (1-\theta) \mathbf{B}({\mathbf{w}_{n}}) (\mathbf{z}_i)_K $
This means that we calculate the spatial residual twice at one Newton
-iteration step: once respect to the current solution ${\mathbf{w}^{k}_{n+1}$
+iteration step: once respect to the current solution $\mathbf{w}^{k}_{n+1}$
and once more respect to the last time step solution $\mathbf{w}_{n}$ which
remains the same during all Newton iterations through one timestep.
Cache up the explicit part of residual
- $ \mathbf{B}({\mathbf{w}_{n}) (\mathbf{z}_i)_K}$
+ $ \mathbf{B}({\mathbf{w}_{n}}) (\mathbf{z}_i)_K$
during Newton iteration will save lots of labor.