applications to individual types of equations, see also the publications by
Becker [<A HREF="#Bec95">6</A>,<A HREF="#Bec98">7</A>], Kanschat [<A HREF="#Kan96">15</A>,<A HREF="#FK97">11</A>], Suttmeier
[<A HREF="#Sut96">19</A>,<A HREF="#RS97">16</A>,<A HREF="#RS98c">17</A>,<A HREF="#RS99">18</A>], Bangerth [<A HREF="#BR99b">3</A>,<A HREF="#Ban00w">1</A>,<A HREF="#BR01a">4</A>,<A HREF="#Ban02">2</A>], and
-Hartmann [<A HREF="#HH01">12</A>,<A HREF="#HH01a">14</A>,<A HREF="#HH01b">13</A>].
+Hartmann [<A HREF="#Har02">12</A>,<A HREF="#HH01">13</A>,<A HREF="#HH01b">14</A>].
<P>
The basic idea is the following: in applications, one is not usually
simplicity to add extensions. If you use this program as a basis for your own
programs, we would kindly like to ask you to state this fact and the name of
the author of the example program, Wolfgang Bangerth, in publications that
-arise from that, of your program consists in a considerable part of the
+arise from that, if your program consists in a considerable part of the
example program.
<BR><EM>Computing</EM>, 58(4):317-334, 1997.
<P>
-<P></P><DT><A NAME="HH01"><STRONG>12</STRONG></A>
+<P></P><DT><A NAME="Har02"><STRONG>12</STRONG></A>
+<DD>
+Ralf Hartmann.
+<BR><EM>Adaptive Finite Element Methods for the Compressible Euler Equations</EM>.
+<BR>PhD thesis, University of Heidelberg, 2002.
+
+<P>
+<P></P><DT><A NAME="HH01"><STRONG>13</STRONG></A>
<DD>
Ralf Hartmann and Paul Houston.
<BR>Adaptive discontinuous Galerkin finite element methods for
nonlinear hyperbolic conservation laws.
-<BR>Preprint 2001-20, (SFB 359), IWR Heidelberg, Mai 2001.
-<BR>to appear in SIAM J. Sci. Comp.
+<BR>SIAM J. Sci. Comput. 24 (2002), pp. 979-1004.
<P>
-<P></P><DT><A NAME="HH01b"><STRONG>13</STRONG></A>
+<P></P><DT><A NAME="HH01b"><STRONG>14</STRONG></A>
<DD>
Ralf Hartmann and Paul Houston.
<BR>Adaptive discontinuous Galerkin finite element methods for the
compressible Euler equations.
-<BR>Preprint 2001-42, (SFB 359), IWR Heidelberg, Dez 2001.
-<BR>submitted.
-
-<P>
-<P></P><DT><A NAME="HH01a"><STRONG>14</STRONG></A>
-<DD>
-Paul Houston and Ralf Hartmann.
-<BR>Goal-oriented a posteriori error estimation for compressible fluid
- flows.
-<BR>In <EM>Proceedings of ENUMATH 2001</EM>, 2001.
-<BR>submitted.
+<BR>J. Comput. Phys. 183 (2002), pp. 508-532.
<P>
<P></P><DT><A NAME="Kan96"><STRONG>15</STRONG></A>
applications to individual types of equations, see also the publications by
Becker \cite{Bec95,Bec98}, Kanschat \cite{Kan96,FK97}, Suttmeier
\cite{Sut96,RS97,RS98c,RS99}, Bangerth \cite{BR99b,Ban00w,BR01a,Ban02}, and
-Hartmann \cite{HH01,HH01a,HH01b}.
+Hartmann \cite{Har02,HH01,HH01b}.
The basic idea is the following: in applications, one is not usually
interested in the solution per se, but rather in certain aspects of it. For
\newblock A posteriori error control in radiative transfer.
\newblock {\em Computing}, 58(4):317--334, 1997.
+\bibitem{Har02}
+Ralf Hartmann.
+\newblock {\em Adaptive Finite Element Methods for the Compressible Euler Equations}.
+\newblock PhD thesis, University of Heidelberg, 2002.
+
\bibitem{HH01}
Ralf Hartmann and Paul Houston.
\newblock Adaptive discontinuous {G}alerkin finite element methods for
nonlinear hyperbolic conservation laws.
-\newblock Preprint 2001-20, (SFB 359), IWR Heidelberg, Mai 2001.
-\newblock submitted.
+\newblock SIAM J. Sci. Comput. 24 (2002), pp. 979-1004.
\bibitem{HH01b}
Ralf Hartmann and Paul Houston.
\newblock Adaptive discontinuous {G}alerkin finite element methods for the
compressible {E}uler equations.
-\newblock Preprint 2001-42, (SFB 359), IWR Heidelberg, Dez 2001.
-\newblock submitted.
-
-\bibitem{HH01a}
-Paul Houston and Ralf Hartmann.
-\newblock Goal--oriented a posteriori error estimation for compressible fluid
- flows.
-\newblock In {\em Proceedings of ENUMATH 2001}, 2001.
-\newblock submitted.
+\newblock J. Comput. Phys. 183 (2002), pp. 508-532.
\bibitem{Kan96}
Guido Kanschat.