* index of a tensor @p src1 of rank @p rank_1 with the first index of a
* tensor @p src2 of rank @p rank_2:
* @f[
- * \text{result}_{i_1,..,i_{r1},j_1,..,j_{r2}}
+ * \text{result}_{i_1,\ldots,i_{r1},j_1,\ldots,j_{r2}}
* = \sum_{k}
- * \text{left}_{i_1,..,i_{r1}, k}
- * \text{right}_{k, j_1,..,j_{r2}}
+ * \text{left}_{i_1,\ldots,i_{r1}, k}
+ * \text{right}_{k, j_1,\ldots,j_{r2}}
* @f]
*
* @note For the Tensor class, the multiplication operator only performs a
* contraction of index @p index_1 of a tensor @p src1 of rank @p rank_1 with
* the index @p index_2 of a tensor @p src2 of rank @p rank_2:
* @f[
- * \text{result}_{i_1,..,i_{r1},j_1,..,j_{r2}}
+ * \text{result}_{i_1,\ldots,i_{r1},j_1,\ldots,j_{r2}}
* = \sum_{k}
- * \text{left}_{i_1,..,k,..,i_{r1}}
- * \text{right}_{j_1,..,k,..,j_{r2}}
+ * \text{left}_{i_1,\ldots,k,\ldots,i_{r1}}
+ * \text{right}_{j_1,\ldots,k,\ldots,j_{r2}}
* @f]
*
* If for example the first index (<code>index_1==0</code>) of a tensor
* index_3 with index @p index_4 of a tensor @p src1 of rank @p rank_1 and a
* tensor @p src2 of rank @p rank_2:
* @f[
- * \text{result}_{i_1,..,i_{r1},j_1,..,j_{r2}}
+ * \text{result}_{i_1,\ldots,i_{r1},j_1,\ldots,j_{r2}}
* = \sum_{k, l}
- * \text{left}_{i_1,..,k,..,l,..,i_{r1}}
- * \text{right}_{j_1,..,k,..,l..,j_{r2}}
+ * \text{left}_{i_1,\ldots,k,\ldots,l,\ldots,i_{r1}}
+ * \text{right}_{j_1,\ldots,k,\ldots,l\ldots,j_{r2}}
* @f]
*
* If for example the first index (<code>index_1==0</code>) shall be
* of equal rank: Return a scalar number that is the result of a full
* contraction of a tensor @p left and @p right:
* @f[
- * \sum_{i_1,..,i_r}
- * \text{left}_{i_1,..,i_r}
- * \text{right}_{i_1,..,i_r}
+ * \sum_{i_1,\ldots,i_r}
+ * \text{left}_{i_1,\ldots,i_r}
+ * \text{right}_{i_1,\ldots,i_r}
* @f]
*
* @relates Tensor
* tensor @p middle of rank $(\text{rank}_1+\text{rank}_2)$ and a tensor @p
* right of rank @p rank_2:
* @f[
- * \sum_{i_1,..,i_{r1},j_1,..,j_{r2}}
- * \text{left}_{i_1,..,i_{r1}}
- * \text{middle}_{i_1,..,i_{r1},j_1,..,j_{r2}}
- * \text{right}_{j_1,..,j_{r2}}
+ * \sum_{i_1,\ldots,i_{r1},j_1,\ldots,j_{r2}}
+ * \text{left}_{i_1,\ldots,i_{r1}}
+ * \text{middle}_{i_1,\ldots,i_{r1},j_1,\ldots,j_{r2}}
+ * \text{right}_{j_1,\ldots,j_{r2}}
* @f]
*
* @note Each of the three input tensors can be either a Tensor or
* The outer product of two tensors of @p rank_1 and @p rank_2: Returns a
* tensor of rank $(\text{rank}_1 + \text{rank}_2)$:
* @f[
- * \text{result}_{i_1,..,i_{r1},j_1,..,j_{r2}}
- * = \text{left}_{i_1,..,i_{r1}}\,\text{right}_{j_1,..,j_{r2}.}
+ * \text{result}_{i_1,\ldots,i_{r1},j_1,\ldots,j_{r2}}
+ * = \text{left}_{i_1,\ldots,i_{r1}}\,\text{right}_{j_1,\ldots,j_{r2}.}
* @f]
*
* @relates Tensor