* Therefore the meanvalue is taken
* at the DoF values on the
* discontinuities.
+ *
+ * Note that the resulting output
+ * vector does not necessarily
+ * respect continuity
+ * requirements at hanging nodes:
+ * if, for example, you are
+ * interpolating a Q2 field to a
+ * Q1 field, then at hanging
+ * nodes the output field will
+ * have the function value of the
+ * input field, which however is
+ * not usually the mean value of
+ * the two adjacent nodes. It is
+ * thus not part of the Q1
+ * function space on the whole
+ * triangulation, although it is
+ * of course Q1 on each cell.
*/
template <int dim, typename number>
- static void interpolate(const DoFHandler<dim> &dof1,
- const Vector<number> &u1,
- const DoFHandler<dim> &dof2,
- Vector<number> &u2);
+ static void interpolate (const DoFHandler<dim> &dof1,
+ const Vector<number> &u1,
+ const DoFHandler<dim> &dof2,
+ Vector<number> &u2);
/**
- * Gives the interpolation of the @p{fe1}-
- * function @p{u1} to a @p{fe2}-function, and
+ * Gives the interpolation of the
+ * @p{fe1}-function @p{u1} to a
+ * @p{fe2}-function, and
* interpolates this to a second
- * @p{fe1}-function named @p{u1_interpolated}.
+ * @p{fe1}-function named
+ * @p{u1_interpolated}.
*
* Note, that this function only
- * makes sense if the finite element
- * space due to @p{fe1} is not a subset of
- * the finite element space due to
- * @p{fe2}, as if it were a subset then
- * @p{u1_interpolated} would be equal to @p{u1}.
+ * makes sense if the finite
+ * element space due to @p{fe1}
+ * is not a subset of the finite
+ * element space due to @p{fe2},
+ * as if it were a subset then
+ * @p{u1_interpolated} would be
+ * equal to @p{u1}.
*/
template <int dim, typename number>
- static void back_interpolate(const DoFHandler<dim> &dof1,
- const Vector<number> &u1,
- const FiniteElement<dim> &fe2,
- Vector<number> &u1_interpolated);
+ static void back_interpolate (const DoFHandler<dim> &dof1,
+ const Vector<number> &u1,
+ const FiniteElement<dim> &fe2,
+ Vector<number> &u1_interpolated);
/**
* Gives $(Id-I_h)z2$ for a given